Abstract:
A method of fabricating a variable resistance memory device includes: forming a bottom electrode on a substrate; forming a dielectric layer on the substrate, wherein the dielectric layer has a first trench that exposes the bottom electrode; forming a variable resistance layer in the first trench; and irradiating the variable resistance layer with a laser, wherein the variable resistance layer is irradiated by the laser for a time of about 1.8 μs to about 54 μs.
Abstract:
A semiconductor device includes a base structure comprising a semiconductor substrate, a first conductive structure disposed on the base structure, and extending in a first direction, the first conductive structure including lower layers, and at least one among the lower layers including carbon, and a data storage pattern disposed on the first conductive structure. The semiconductor device further includes an intermediate conductive pattern disposed on the data storage pattern, and including intermediate layers, at least one among the intermediate layers including carbon, a switching pattern disposed on the intermediate conductive pattern, and a switching upper electrode pattern disposed on the switching pattern, and including carbon. The semiconductor device further includes a second conductive structure disposed on the switching upper electrode pattern, and extending in a second direction intersecting the first direction, and a hole spacer disposed on a side surface of the data storage pattern.
Abstract:
Three-dimensional semiconductor memory devices and methods of fabricating the same. The three-dimensional semiconductor devices include an electrode structure with sequentially-stacked electrodes disposed on a substrate, semiconductor patterns penetrating the electrode structure, and memory elements including a first pattern and a second pattern interposed between the semiconductor patterns and the electrode structure, the first pattern vertically extending to cross the electrodes and the second pattern horizontally extending to cross the semiconductor patterns.
Abstract:
Three-dimensional semiconductor memory devices and methods of fabricating the same. The three-dimensional semiconductor devices include an electrode structure with sequentially-stacked electrodes disposed on a substrate, semiconductor patterns penetrating the electrode structure, and memory elements including a first pattern and a second pattern interposed between the semiconductor patterns and the electrode structure, the first pattern vertically extending to cross the electrodes and the second pattern horizontally extending to cross the semiconductor patterns.
Abstract:
A nonvolatile memory device and a method of forming the nonvolatile memory device, the method including forming a tunnel insulating layer on a substrate, wherein forming the tunnel insulating layer includes forming a multi-element insulating layer by a process including sequentially supplying a first element source, a second element source, and a third element source to the substrate, forming a charge storage layer on the tunnel insulating layer, forming a blocking insulating layer on the charge storage layer, and forming a control gate electrode on the blocking insulating layer.
Abstract:
A three-dimensional (3D) semiconductor memory device includes an electrode separation pattern, a stack structure, a data storage layer, and a channel structure. The electrode separation pattern is disposed on a substrate. A stack structure is disposed on a sidewall of the electrode separation pattern. The stack structure includes a corrugated sidewall opposite to the sidewall of the electrode separation pattern. The sidewall of the electrode separation pattern is vertical to the substrate. A data storage layer is disposed on the corrugated sidewall. A channel structure is disposed on the charge storage layer.
Abstract:
Three-dimensional semiconductor memory devices and methods of fabricating the same. The three-dimensional semiconductor devices include an electrode structure with sequentially-stacked electrodes disposed on a substrate, semiconductor patterns penetrating the electrode structure, and memory elements including a first pattern and a second pattern interposed between the semiconductor patterns and the electrode structure, the first pattern vertically extending to cross the electrodes and the second pattern horizontally extending to cross the semiconductor patterns.
Abstract:
A semiconductor device includes a semiconductor substrate, a peripheral device on the semiconductor substrate, a lower insulating structure on the semiconductor substrate and covering the peripheral device, a first conductive line on the lower insulating structure, a memory cell structure on the first conductive line, and a second conductive line on the memory cell structure. The memory cell structure may include an information storage material pattern and a selector material pattern on the lower insulating structure in a vertical direction. The selector material pattern may include a first selector material layer including a first material and a second selector material layer including a second material. The second selector material layer may have a threshold voltage drift higher than that of the first material. The second selector material layer may have a second width narrower than a first width of the first selector material layer.
Abstract:
A semiconductor device includes a substrate; first conductive lines extending in a first direction; second conductive lines extending in a second direction; memory cell structures between the first conductive lines and the second conductive lines; and dummy cell structures that are electrically isolated and between the first conductive lines and the second conductive lines. The memory cell structures include a data storage material pattern including a phase change material layer; and a selector material pattern overlapping the data storage material pattern in a vertical direction. The dummy cell structures include a dummy pattern including a phase change material layer. The phase change material layer of the dummy pattern includes a crystalline phase portion and an amorphous phase portion. At a cross section of the phase change material layer of the dummy pattern, an area of the crystalline phase portion is larger than an area of the amorphous phase portion.
Abstract:
Three-dimensional semiconductor memory devices and methods of fabricating the same. The three-dimensional semiconductor devices include an electrode structure with sequentially-stacked electrodes disposed on a substrate, semiconductor patterns penetrating the electrode structure, and memory elements including a first pattern and a second pattern interposed between the semiconductor patterns and the electrode structure, the first pattern vertically extending to cross the electrodes and the second pattern horizontally extending to cross the semiconductor patterns.