摘要:
A method for producing a Group III element nitride single crystal, which comprises reacting at least one Group III element selected from the group consisting of gallium(Ga), aluminum(Al) and indium(In) with nitrogen(N) in a mixed flux of sodium(Na) and at least one of an alkali metal (except Na) and an alkaline earth metal. The method allows the production, with a good yield, of the single crystal of a group III element nitride which is transparent, is reduced in the density of dislocation, has a bulk form, and is large. In particular, a gallium nitride single crystal produced by the method has high quality and takes a large and transparent bulk form, and thus has a high practical value.
摘要:
The present invention provides a method for producing a semiconductor substrate, the method including reacting nitrogen (N) with gallium (Ga), aluminum (Al), or indium (In), which are group III elements, in a flux mixture containing a plurality of metal elements selected from among alkali metals and alkaline earth metals, to thereby grow a group III nitride based compound semiconductor crystal. The group III nitride based compound semiconductor crystal is grown while the flux mixture and the group III element are mixed under stirring. At least a portion of a base substrate on which the group III nitride based compound semiconductor crystal is grown is formed of a flux-soluble material, and the flux-soluble material is dissolved in the flux mixture, at a temperature near the growth temperature of the group III nitride based compound semiconductor crystal, during the course of growth of the semiconductor crystal.
摘要:
A method for producing Group-III-element nitride crystals by which an improved growth rate is obtained and large high-quality crystals can be grown in a short time, a producing apparatus used therein, and a semiconductor element obtained using the method and the apparatus are provided. The method is a method for producing Group-III-element nitride crystals that includes a crystal growth process of subjecting a material solution containing a Group III element, nitrogen, and at least one of alkali metal and alkaline-earth metal to pressurizing and heating under an atmosphere of a nitrogen-containing gas so that the nitrogen and the Group III element in the material solution react with each other to grow crystals. The method further includes, prior to the crystal growth process, a material preparation process of preparing the material solution in a manner that under an atmosphere of a nitrogen-containing gas, at least one of an ambient temperature and an ambient pressure is set so as to be higher than is set as a condition for the crystal growth process so that the nitrogen is allowed to dissolve in a melt containing the Group III element and the at least one of alkali metal and alkaline-earth metal. The method according to the present invention can be performed by using, for example, the producing apparatus shown in FIG. 7.
摘要:
A nitride single crystal is produced using a growth solution 7 containing an easily oxidizable material. A crucible 1 for storing the growth solution 7, a pressure vessel for storing the crucible and charging an atmosphere containing at least nitrogen, and an oxygen absorber 14, 15 disposed inside the pressure vessel and outside the crucible 1 are used to grow the nitride single crystal.
摘要:
The present invention relates to a process for producing high-quality crystals of protein or organic substances easily and efficiently. A solution of protein or an organic substance is prepared and then is cooled slowly to be supersaturated to a low degree. This supersaturated solution is irradiated with a femtosecond laser 10. A local explosion phenomenon occurs at the focal point of the laser and thereby a crystalline nucleus is generated. A high-quality crystal is obtained when a crystal is grown on the crystalline nucleus over a long period of time. The femtosecond laser to be used herein can be a titanium:sapphire laser having a wavelength of 800 nm, a duration of 120 fs, a frequency of 1 kHz, and an output of 400 mW.
摘要:
There is provided a nonlinear optical crystal which is presented by the formula: K2Al2B2O7. This nonlinear optical crystal is a vacuum ultraviolet light generating nonlinear optical crystal which is easy to grow and of high practical use. There are also provided a wavelength conversion method using this crystal, and an element and a wavelength conversion apparatus for use in the method.
摘要翻译:提供了一种非线性光学晶体,其由下列公式表示:K 2 2 Al 2 B 2 N 2 O 7 。 这种非线性光学晶体是一种容易生长和高实用性的真空紫外线发生非线性光学晶体。 还提供了使用该晶体的波长转换方法以及用于该方法的元件和波长转换装置。
摘要:
In a method for growing a single crystal by bringing a seed crystal (4) into contact with a melt (2) of raw materials melted under heating in a crucible (1) a blade member (5) or a baffle member in disposed in the raw material melt (2) in the crucible (1) and a single crystal is grown by pulling up it with rotating the crucible (1) to thereby grow various single crystals including CLBO from the highly viscous raw material melt (2) as high quality and high performance crystals.
摘要:
A growth apparatus is used having a plurality of crucibles each for containing the solution, a heating element for heating the crucible, and a pressure vessel for containing at least the crucibles and the heating element and for filling an atmosphere comprising at least nitrogen gas. One seed crystal is put in each of the crucibles to grow the nitride single crystal on the seed crystal.
摘要:
A raw material mixture containing an easily oxidizable material is weighed. The raw material mixture is melted and then solidified within a reaction vessel 1 set in a non-oxidizing atmosphere to thereby produce a solidified matter 19. The reaction vessel 1 and the solidified matter 19 are heated in a non-oxidizing atmosphere within a crystal growth apparatus to melt the solidified matter to thereby produce a solution. A single crystal is grown from the solution.
摘要:
In the production of GaN through the flux method, deposition of miscellaneous crystals on the nitrogen-face of a GaN self-standing substrate and waste of raw materials are prevented. Four arrangements of crucibles and a GaN self-standing substrate are exemplified. In FIG. 1A, a nitrogen-face of a self-standing substrate comes into close contact with a sloped flat inner wall of a crucible. In FIG. 1B, a nitrogen-face of a self-standing substrate comes into close contact with a horizontally facing flat inner wall of a crucible, and the substrate is fixed by means of a jig. In FIG. 1C, a jig is provided on a flat bottom of a crucible, and two GaN self-standing substrates are fixed by means of the jig so that the nitrogen-faces of the substrates come into close contact with each other. In FIG. 1D, a jig is provided on a flat bottom of a crucible, and a GaN self-standing substrate is fixed on the jig so that the nitrogen-face of the substrate is covered with the jig. A flux mixture of molten gallium and sodium is charged into each crucible, and a GaN single crystal is grown on a gallium-face under pressurized nitrogen.