摘要:
Detection of a facial attribute such as a smile or gender in a human face in an image is performed by embodiments of the present invention in a computationally efficient manner. First, a face in the image is detected to produce a facial image. Facial landmarks are detected in the facial image. The facial image is aligned and normalized based on the detected facial landmarks to produce a normalized facial image. Local features from selected local regions are extracted from the normalized facial image. A facial attribute is predicted in each selected local region by inputting each selected local feature into a weak classifier having a multi-layer perceptron (MLP) structure. Finally, output data is aggregated from each weak classifier component to generate all indication that the facial attribute is detected in the facial image.
摘要:
The present invention relates to a basic function unit of voltage source converter, which is characterized in that the basic function unit includes a switching device function module, a by-pass function module, a switch protection function module, a secondary control and protection function module, and a energy storage unit. The secondary control and protection function module, the energy storage unit and the by-pass function module are all fixed on the motherboard, there is a slide rail at the bottom of the motherboard, the motherboard can move back and forth on the slide rail. The voltage source converter based on that unit is highly modular, insensitive to switch device parameters, lower output voltage change rate, and smaller dv/dt stress of equipment, smaller noise, without filter, convenient installation and maintenance.
摘要:
The present invention provides a method includes: receiving a downlink channel quality indicator or an interference indicator, where the downlink channel quality indicator or the interference indicator is fed back by a UE; estimating a weak interference noise matrix of the UE according to the downlink channel quality indicator or the interference indicator, where the downlink channel quality indicator or the interference indicator is fed back by the UE; obtaining a time-frequency channel matrix of a serving cell and a time-frequency strong interference matrix of a strong interfering cell, and obtaining a time-frequency interference noise matrix of the UE according to the estimated weak interference noise matrix and the time-frequency strong interference matrix; and estimate downlink channel quality according to the time-frequency channel matrix and the time-frequency interference noise matrix.
摘要:
The present disclosure relates to variable-gain low noise amplifiers and RF receivers. An exemplary method for processing a RF signal provides a low noise amplifier with main and auxiliary amplifier modules. When a selection indicates the low noise amplifier operating in a high-gain mode, the main and auxiliary amplifier modules are coupled in parallel. When the selection indicates the low noise amplifier operating in a low-gain mode, the main and auxiliary amplifier modules are cross coupled. When a selection indicates the low noise amplifier operating in a moderate-gain mode, the auxiliary amplifier modules are disconnected from the main amplifier module.
摘要:
The present invention discloses an OFDM signal demodulation method and device thereof. The method comprises: adding a pre-obtained timing offset estimation value of an OFDM signal demodulation device to the initial position of an OFDM symbol of a received signal to obtain a window deviation value of the OFDM symbol; adding a channel time delay extension to the window deviation value to obtain a combined prefix initial position; calculating the combined OFDM signal value starting from the prefix initial position; processing the Fast Fourier Transform (FFT) for the combined OFDM signal value to obtain a frequency domain data subcarrier signal; calculating the frequency domain original channel estimation value processing the channel estimation based on the original channel estimation value phase modification of the OFDM symbol according to the channel estimation compensation indication value; and processing equalization and detection for the frequency domain data subcarrier signal according to the channel estimation result. The present invention uses the cycle prefix of the received signals to promote the demodulation performance of the OFDM signal demodulation device.
摘要:
Various embodiments are presented herein that may render an image frame on an autostereoscopic 3D display. A computer platform including a processor circuit executing a rendering application may determine a current orientation of a virtual camera array within a three-dimensional (3D) scene and at least on additional 3D imaging parameter for the 3D scene. The rendering application, with the aid of a ray tracing engine, may also determine a depth range for the 3D scene. The ray tracing engine may then facilitate rendering of the image frame representative of the 3D scene using a ray tracing process.
摘要:
Described herein are improved capabilities for a source resonator having a Q-factor Q1>100 and a characteristic size x1 coupled to an energy source, and a second resonator having a Q-factor Q2>100 and a characteristic size x2 coupled to an energy drain located a distance D from the source resonator, where the source resonator and the second resonator are coupled to exchange energy wirelessly among the source resonator and the second resonator.
摘要:
At least a first capacitor is formed on a substrate and connected to a first differential node of a differential circuit, and the first capacitor may be variable in capacitance. A second capacitor is formed on the substrate and connected to a second differential node of the differential circuit, and the second capacitor also may be variable. A third capacitor is connected between the first differential node and the second differential node, and is formed at least partially above the first capacitor. In this way, a size of the first capacitor and/or the second capacitor may be reduced on the substrate, and capacitances of the first and/or second capacitor(s) may be adjusted in response to a variable characteristic of one or more circuit components of the differential circuit.
摘要:
The disclosure discloses a fine frequency offset estimation method and apparatus. The method comprises: calculating a first accumulated estimation value corresponding to a first multiframe state according to a phase relevant value of a subframe and a phase of a subframe in the first multiframe state; calculating a second accumulated estimation value corresponding to a second multiframe state according to the phase relevant value of the subframe and a phase of a subframe in the second multiframe state; determining that a decision result of a multiframe state is the first multiframe state or the second multiframe state according to the first accumulated estimation value and the second accumulated estimation value; and performing a fine frequency offset estimation according to the decision result of the multiframe state. The apparatus disclosed in the disclosure is less coupled with other modules, has excellent performance in various environments, and realizes the unbiased estimation of timing offset.
摘要:
A multi-core processor system may support 3D image rendering on an autostereoscopic display. The 3D image rendering includes pre-processing of depth map and 3D image wrapping tasks. The pre-processing of depth map may include a foreground prior depth image smoothing technique, which may perform a depth gradient detection and a smoothing task. The depth gradient detection task may detect areas with large depth gradient and the smoothing task may transform the large depth gradient into a linearly changing shape using low-strength, low-pass filtering techniques. The 3D image wrapping may include vectorizing the code for 3D image wrapping of row pixels using an efficient single instruction multiple data (SIMD) technique. After vectorizing, an API such as OpenMP may be used to parallelize the 3D image wrapping procedure. The 3D image wrapping using OpenMP may be performed on rows of the 3D image and on images of the multiple view images.