Abstract:
This document describes biochemical pathways for producing 7-aminoheptanoic acid using a β-ketoacyl synthase or a β-ketothiolase to form an N-acetyl-5-amino-3-oxopentanoyl-CoA intermediate. 7-aminoheptanoic acid can be enzymatically converted to pimelic acid, 7-hydroxyheptanoic acid, heptamethylenediamine or 1,7-heptanediol or corresponding salts thereof. This document also describes recombinant microorganisms producing 7-aminoheptanoic acid as well as pimelic acid, 7-hydroxyheptanoic acid, heptamethylenediamine and 1,7-heptanediol or corresponding salts thereof.
Abstract:
This document describes biochemical pathways for producing pimelic acid, 7-aminoheptanoate, 7-hydroxyheptanoate, heptamethylenediamine, or 1,7-heptanediol by forming two terminal functional groups, comprised of carboxyl, amine or hydroxyl group, in a C7 aliphatic backbone substrate produced from chorismate or benzoate. These pathways, metabolic engineering and cultivation strategies described herein rely on the anaerobic benzoyl-CoA degradation pathway enzymes.
Abstract:
Pentenenitrile oligomers formed in a process for isomerizing cis-2-pentenenitrile to 3-pentenenitrile are minimized in the presence of an aluminum oxide catalyst. The process comprises providing an aluminum oxide catalyst having an alkali metal and/or alkaline earth metal and/or iron content, measured in the form of alkali metal oxide and/or alkaline earth metal oxide and/or iron oxide, respectively of less than 5000 ppm by weight.
Abstract:
This document describes biochemical pathways for producing pimelic acid, 7-aminoheptanoic acid, 7-hydroxyheptanoic acid, heptamethylenediamine or 1,7-heptanediol by forming one or two terminal functional groups, each comprised of carboxyl, amine or hydroxyl group, in a C7 aliphatic backbone substrate. These pathways, metabolic engineering and cultivation strategies described herein rely on the C1 elongation enzymes or homolog associated with coenzyme B biosynthesis.
Abstract:
Disclosed herein are spandex fibers having reduced friction combined to provide a multiple end spandex package. The spandex fibers have a sheath-core cross-section with a lubricating additive is included in the sheath. A fusing additive specifically excluded to avoid coalescence among the individual filaments in the yarn. When combined in a yarn package, the multiple filaments are separable.
Abstract:
The present invention relates to a process for manufacturing copolyether ester polyol having a low oligomeric cyclic ether content, for example, less than about 2.0% by weight, from feedstock comprising polytetramethylene ether glycol having a low number average molecular weight, for example, 350 g/mol or less, and a high oligomeric cyclic ether content, for example, about 4.0% by weight or greater.
Abstract:
The present disclosure relates to methods for separating at least one amine chosen from diamines and omega-aminoacids from a feed mixture using a simulated moving bed (SMB) adsorptive technology.
Abstract:
Included are multiple component elastic fibers prepared by a solution-spinning process such as dry spinning or wet spinner of spandex fibers including polyurethaneurea and polyurethane compositions. These fibers have a cross-section including at least two separate regions with definable boundaries wherein at least one region defined by the boundaries of the cross-section includes a polyurethaneurea or polyurethane composition. One region of the fiber includes a fusibility improvement additive to enhance adhesion to itself or to a substrate.
Abstract:
The present disclosure provides novel polypeptides with 3-buten-2-ol dehydratase activity, polypeptides with catalytic activity in the conversion of 3-methyl-3-buten-2-ol to isoprene, and crystal structure data for one of such polypeptides. Methods of making and using the polypeptides and their related crystal structure data are also provided.
Abstract:
This document describes biochemical pathways for producing butadiene by forming two vinyl groups in a butadiene synthesis substrate. These pathways described herein rely on enzymes such as mevalonate diphosphate decarboxylase, isoprene synthase, and dehydratases for the final enzymatic step.