摘要:
One embodiment of a braking system for vehicles may have a first brake group and a second brake group. The first and second brake groups may have respective braking devices and electro-hydraulic actuator devices operatively connected to the first braking device. The system may also have an interconnection branch between first and the second hydraulic actuation ducts, provided with a control valve. The system may also have at least one control unit that may be programmed to actuate the control valve to control the ducts and fluidly connect the ducts.
摘要:
At least one embodiment of the present disclosure provides an apparatus for braking a vehicle, including a plurality of electro-mechanical braking (EMB) systems respectively installed for a plurality of vehicle wheels and configured to generate a braking force to the plurality of wheels, respectively, a driving information detecting unit for measuring driving information of the vehicle, an electronic power steering (EPS) system generating a steering torque in a direction opposite to a braking torque generated in the vehicle, and an electronic control unit (ECU) controlling the electro-mechanical braking systems and the electronic power steering system, wherein the electronic control unit is configured to control, upon determining that one or some of the plurality of electro-mechanical braking systems are malfunctioning, the vehicle by using the electronic power steering system, and the electronic power steering system is configured to generate the steering torque according to the driving information including wheel speeds.
摘要:
When an engine speed is less than a safeguard speed while a vehicle downhill assist control is being executed, a target speed of the vehicle downhill assist control is increased. In addition, if the target speed is greater than a vehicle speed, braking force applied to the vehicle is decreased.
摘要:
A PCM (50) that is an engine control device functions to acquire a master vac negative pressure which is the negative pressure of a stabilized chamber of a master vac (126) which amplifies a brake pedal depressing force applied to a brake pedal (102), and also acquire a brake working fluid pressure that is a braking hydraulic pressure produced by a master cylinder (144) in accordance with the brake pedal depressing force amplified by the master vac (126), and in a case where both accelerator pedal (104) and a brake pedal (102) are depressed or actuated simultaneously, determine whether or not it is necessary to decrease engine output based on such master vac negative pressure and brake working fluid pressure to execute the output decreasing control for decreasing the engine output.
摘要:
A vehicle controller applies a braking force to wheels using a hydraulic braking force generating mechanism and sets a vehicle driving torque, which is generated by an engine, to a second torque which is smaller than a first torque in a normal state, when a switch is switched to an ON state in a state in which a vehicle is traveling and an accelerator is turned on. Then vehicle stops, the vehicle controller implements an EPB mechanical operating state using a mechanical parking brake mechanism. When the switch is switched to an OFF sate, the vehicle controller maintains the EPB mechanical operating state until an accelerator pedal operating level reaches “0,” and maintains the vehicle driving torque at the second torque. Then the accelerator pedal operating level reaches “0”, the EPB mechanical operating state is released and the vehicle driving torque is returned to the first torque.
摘要:
A cruise control apparatus controls travel of an own vehicle based on a predicted course which is a future travel course of the own vehicle. The cruise control apparatus includes a first predicted course calculating unit and a second predicted course calculating unit, as a plurality of course prediction means for calculating a predicted course, and is provided with a course change determination unit for determining whether a change in the course is to be performed and a prediction switching unit which performs switching to enable one of a first predicted course calculated by the first predicted course calculating unit and a second predicted course calculated by the second predicted course calculation unit, the switching being based on a result of determination made by the course change determination unit as to whether a change in the course is to be performed.
摘要:
A PCM (50) that is an engine control device functions to acquire a master vac negative pressure which is the negative pressure of a stabilized chamber of a master vac (126) which amplifies a brake pedal depressing force applied to a brake pedal (102), and also acquire a brake working fluid pressure that is a braking hydraulic pressure produced by a master cylinder (144) in accordance with the brake pedal depressing force amplified by the master vac (126), and in a case where both accelerator pedal (104) and a brake pedal (102) are depressed or actuated simultaneously, determine whether or not it is necessary to decrease engine output based on such master vac negative pressure and brake working fluid pressure to execute the output decreasing control for decreasing the engine output.
摘要:
A multi-functional electric module (eModule) is provided for a vehicle having a chassis, a master controller, and a drive wheel having a propulsion-braking module. The eModule includes a steering control assembly, mounting bracket, propulsion control assembly, brake controller, housing, and control arm. The steering control assembly includes a steering motor controlled by steering controllers in response to control signals from the master controller. A mounting feature of the bracket connects to the chassis. The propulsion control assembly and brake controller are in communication with the propulsion-braking module. The control arm connects to the lower portion and contains elements of a suspension system, with the control arm being connectable to the drive wheel via a wheel input/output block. The controllers are responsive to the master controller to control a respective steering, propulsion, and braking function. The steering motor may have a dual-wound stator with windings controlled via the respective steering controllers.
摘要:
An integrated stability control system using the signals from an integrated sensing system for an automotive vehicle includes a plurality of sensors sensing the dynamic conditions of the vehicle. The sensors include an IMU sensor cluster, a steering angle sensor, wheel speed sensors, any other sensors required by subsystem controls. The signals used in the integrated stability controls include the sensor signals; the roll and pitch attitudes of the vehicle body with respect to the average road surface; the road surface mu estimation; the desired sideslip angle and desired yaw rate from a four-wheel reference vehicle model; the actual vehicle body sideslip angle projected on the moving road plane; and the global attitudes. The demand yaw moment used to counteract the undesired vehicle lateral motions (under-steer or over-steer or excessive side sliding motion) are computed from the above-mentioned variables. The braking control is a slip control whose target slip ratios at selective wheels or wheel are directly generated from the request brake pressures computed from the demand yaw moment.
摘要:
A vehicle control device includes a turning state changing mechanism for changing a turning state of a vehicle on the basis of a turning state changing command, and a curve-driving assessment portion for inputting therein a curve characteristic information including a shape of a curve existing in a traveling direction of the vehicle and a line-of-sight information relating to a line-of-sight of a driver and for outputting the turning state changing command to the turning state changing mechanism on the basis of the curve characteristic information and the line-of-sight information.