Abstract:
Laminates having microfluidic structures disposed between sheets of the laminate are provided. The microfluidic structures are raised on a sheet of laminate, typically by printing the structure on the sheet. Printing methods include Serigraph, ink-jet, intaligo, offset printing and thermal laser printing.
Abstract:
The present invention relates to a method for producing a timepiece comprising at least one first part produced by a microfabrication or microforming method in at least one first material, said method comprising at least: a step of depositing, on said first part, without moulding, at least one second part of said timepiece in at least one second material, and a step of treating the second material in order to connect together the components on the first part.
Abstract:
Embodiments of the present disclosure digital microfluidic arrays that may be fabricated by a printing method, whereby digital microfluidic electrodes arrays are printed, via a printing method such as inkjet printing, onto a suitable substrate. In some embodiments, a substrate and/or ink is prepared or modified to support the printing of electrode arrays, such as via changes to the surface energy. In some embodiments, porous and/or fibrous substrates are prepared by the addition of a barrier layer, or, for example, by the addition or infiltration of a suitable material to render the surface capable of supporting printed electrodes. Various example embodiments involving hybrid devices formed by the printing of digital microfluidic arrays onto a substrate having a hydrophilic layer are disclosed.
Abstract:
An apparatus for forming an array of deposits on a substrate is disclosed. The apparatus may include a stencil capable of releasable attached to the substrate and having an array of openings and at least one alignment mark. The apparatus may further include a high throughput deposition printer aligned with the stencil to form an array of deposits on the substrate. The array of deposits may be aligned with the array of openings through the at least one alignment mark and an optional alignment device. Methods of manufacturing the stencil and using it to generate multiplexed or combinatorial arrays are also disclosed.
Abstract:
Embodiments of the present disclosure digital microfluidic arrays that may be fabricated by a printing method, whereby digital microfluidic electrodes arrays are printed, via a printing method such as inkjet printing, onto a suitable substrate. In some embodiments, a substrate and/or ink is prepared or modified to support the printing of electrode arrays, such as via changes to the surface energy. In some embodiments, porous and/or fibrous substrates are prepared by the addition of a barrier layer, or, for example, by the addition or infiltration of a suitable material to render the surface capable of supporting printed electrodes. Various example embodiments involving hybrid devices formed by the printing of digital microfluidic arrays onto a substrate having a hydrophilic layer are disclosed.
Abstract:
A switch and a relay include a contact with a smooth contacting surface. A side surface of a fixed contact faces a side surface of a movable contact. The fixed contact has an insulating layer and a base layer stacked on a fixed contact substrate, and a first conductive layer formed thereon through electrolytic plating. The side surface of the first conductive layer that faces the movable contact becomes the fixed contact (contacting surface). The movable contact has an insulating layer and a base layer stacked on the movable contact substrate, and a movable contact formed thereon through electrolytic plating. A side surface of a second conductive layer that faces the fixed contact becomes the movable contact (contacting surface). The fixed contact and the movable contact have surfaces that contact the side surfaces of the mold portion when growing the first and second conductive layers through electrolytic plating.
Abstract:
A method of patterning nanostructures comprising printing an ink comprising the nanostructures onto a solvent-extracting first surface such that a pattern of nanostructures is formed on the first surface.
Abstract:
An apparatus for forming an array of deposits on a substrate is disclosed. The apparatus may include a stencil capable of releasable attached to the substrate and having an array of openings and at least one alignment mark. The apparatus may further include a high throughput deposition printer aligned with the stencil to form an array of deposits on the substrate. The array of deposits may be aligned with the array of openings through the at least one alignment mark and an optional alignment device. Methods of manufacturing the stencil and using it to generate multiplexed or combinatorial arrays are also disclosed.
Abstract:
A method of patterning nanostructures comprising printing an ink comprising the nanostructures onto a solvent-extracting first surface such that a pattern of nanostructures is formed on the first surface.
Abstract:
A digital lithography system including a droplet source (printhead) for selectively ejecting liquid droplets of a phase-change masking material, and an imaging system for capturing (generating) image data representing printed features formed by the ejected liquid droplets. The system also includes a digital control system that detects defects in the printed features, for example, by comparing the image data with stored image data. The digital control system then modifies the printed feature to correct the defect, for example, by moving the printhead over the defect and causing the printhead to eject droplets onto the defect's location. In one embodiment, a single-printhead secondary printer operates in conjunction with a multi-printhead main printer to correct defects.