Abstract:
A method of manufacturing a metal microstructure (1) by using a resin mold (13). In order to provide a method in which a mild manufacturing condition which causes less damage to the resin mold (13) can be set and the high-precision metal microstructure (1) can be mass-produced by uniform electroforming, the method of manufacturing the metal microstructure (1) according to the present invention includes the steps of: fixing on a conductive substrate (11) the resin mold (13) having a vacant portion penetrating in the direction of thickness, by interposing a photosensitive polymer (12) having a chemical composition changed by an electron beam, ultraviolet radiation or visible radiation so as to form a layered structure (2) having the resin mold (13); exposing the layered structure (2) having the resin mold (13) to an electron beam, ultraviolet radiation or visible radiation; removing an exposed photosensitive polymer (12c) existing at the vacant portion of the resin mold (13); and filling with a metal (14) the vacant portion of the layered structure (2) having the resin mold (13) by electroforming.
Abstract:
The invention relates to a flat coil and to a lthographic method for producing microcomponents with metal component sources in the sub-millimeter range. According to the inventive method, a resist material is structured by means of selective exposition and removing the unexposed zones and filling in the gaps between the resist structures with metal by means of a galvanic method to produe the metal component structures. The aim of the invention is to improve such a method so that the microcomponents can be subdivided during said process. To this end, a structured three-dimensional sacrificial metal layer is produced during the production of the microcomponent, said sacrificial layer delimiting the microcomponent and being removed once the microcomponent is due to be subdivided. The invention also relates to a method for producing microcomponents with component structures of cross-linkable resist material and to a flat coil for micromotors with at least one coil layer with strip conductors in the sub-millimeter range.
Abstract:
A stamper-forming electrode material contains Cu as its main ingredient and at least one other element, preferably Ag and/or Ti. It is preferred that the Ag content be 10.0 wt % or less and that the Ti content be 5.0 wt % or less. A stamper-forming thin film is made of this stamper-forming electrode material, whereby its corrosion resistance is improved to suppress damage to itself, and a high-quality stamper can hence be formed.
Abstract:
An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
Abstract:
In the formation of microstructures, a preformed sheet of photoresist, such as polymethylmethacrylate (PMMA), which is strain free, may be milled down before or after adherence to a substrate to a desired thickness. The photoresist is patterned by exposure through a mask to radiation, such as X-rays, and developed using a developer to remove the photoresist material which has been rendered susceptible to the developer. Micrometal structures may be formed by electroplating metal into the areas from which the photoresist has been removed. The photoresist itself may form useful microstructures, and can be removed from the substrate by utilizing a release layer between the substrate and the preformed sheet which can be removed by a remover which does not affect the photoresist. Multiple layers of patterned photoresist can be built up to allow complex three dimensional microstructures to be formed.
Abstract:
The invention relates to a method of fabricating a composite micromechanical component, particularly for timepiece movements, including steps: a) providing a substrate including a horizontal top layer and a horizontal bottom layer made of electrically conductive, micromachinable material, and secured to each other by an electrically insulating, horizontal, intermediate layer; b) etching a pattern in the top layer through to the intermediate layer, thereby forming at least one cavity in the substrate; c) coating the top part of the substrate with an electrically insulating coating; d) directionally etching the coating and the intermediate layer to limit the presence thereof exclusively at each vertical wall; e) performing an electrodeposition by connecting the electrode to the conductive bottom layer of the substrate to form at least one metal part of the component; g) releasing the composite component from the substrate.
Abstract:
An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
Abstract:
An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
Abstract:
An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
Abstract:
The present invention concerns a method of fabricating a plurality of metallic microstructures, characterized in that it includes the steps consisting in: a) taking a conductive substrate or an insulating substrate coated with a conductive seed layer; b) applying a layer of photosensitive resin over the conductive part of the substrate surface; c) flattening the surface of the photosensitive resin layer to the desired thickness and/or surface state; d) irradiating the resin layer through a mask defining the contour of the desired microstructure; e) dissolving the non-polymerized areas of the photosensitive resin layer to reveal, in places, the conductive surface of the substrate; f) the galvanic deposition of at least one layer of a metal from said conductive layer to form a unit substantially reaching the upper surface of the photosensitive resin; g) flattening the resin and the electroformed metal to bring the resin and the electroformed units to the same level and thereby form electroformed parts or microstructures; h) separating the resin layer and the electroformed parts from the substrate; and i) removing the layer of photosensitive resin from the structure obtained at the end of step g) to release the microstructures thereby formed.