Abstract:
The present invention is directed to data communication system and methods. More specifically, various embodiments of the present invention provide a communication interface that is configured to transfer data at high bandwidth using PAM format(s) over optical communication networks. A feedback mechanism is provided for adjusting the transmission power levels. There are other embodiments as well.
Abstract:
The present invention is directed to data communication system and methods. More specifically, various embodiments of the present invention provide a communication interface that is configured to transfer data at high bandwidth using PAM format(s) over optical communication networks. In various embodiments, amplitude and phase of the optical wave are modulated. There are other embodiments as well.
Abstract:
The present invention is directed to communication system and methods. More specifically, various embodiments of the present invention provide a communication interface that is configured to transfer data at high bandwidth using PAM format(s) over optical communication networks. In certain embodiments, the communication interface is used by various devices within a spine-leaf network architecture, which allows large amount of data to be shared among servers.
Abstract:
Techniques for operating a DIMM apparatus. The apparatus comprises a plurality of DRAM devices numbered from 0 through N−1, where N is an integer greater than seven (7), each of the DRAM devices is configured in a substrate module; a buffer integrated circuit device comprising a plurality of data buffers (DB) numbered from 0 through N−1, where N is an integer greater than seven (7), each of the data buffers corresponds to one of the DRAM devices; and a plurality of error correcting modules (“ECMs”) associated with the plurality of DRAM devices.
Abstract:
Techniques for processing signal information from a high speed communication bus. The techniques includes determining spatial regions on an eye characterized by a start point, an end point, a middle point, a left point, and a right point. The start point is a beginning of an eye opening at a reference voltage. The end point is at an ending of eye opening at the reference voltage. The middle point is at a center point of eye opening at the reference voltage. The left point is a left sampling location characterized by a minimum setup time requirement, and the right point is a right sampling location characterized by a minimum hold time requirement. Determining the points is based on shifting a DQS position and a DQ position and running a plurality of memory built-in self test (BIST) engines and a plurality of results of BIST tests.
Abstract:
The present invention is directed to server systems and methods thereof. More specifically, embodiments of the present invention provides a memory controller within a server system, where the memory controller is disengageably connected to one or more processors, a plurality of volatile memory modules, and plurality of solid-state memory modules. This memory controller may be connected to other similarly configured memory controllers. The volatile and solid-state memory modules can be removed and/or replaced. There are other embodiments as well.
Abstract:
The voltage regulator device has a wide band amplifier having an input reference voltage, Vref and an input feedback voltage, Vfbk. The device has a source follower coupled to the wide band amplifier, the source follower coupled to an output of the wide band amplifier. The device has a VDD source, a regulator output, and a current source coupled to the source follower and the VDD source. The device has a low frequency path comprising a first transistor. The first transistor has a first gate, a first source, and a first drain. The first source is coupled to the VDD source. The first gate is coupled to a slow node, and the first drain is coupled to the regulator output. The low frequency path comprises a RC network, which has a capacitor, a resistor, and the slow node configured between the resistor and the capacitor. The device has a high frequency path comprising a second transistor. The second transistor has a second gate, a second source, and a second drain. The second source is coupled to the VDD source. The second gate is coupled to a fast node, and the second drain is coupled to the regulator output.
Abstract:
The present invention is directed to signal processing system and electrical circuits. More specifically, embodiments of the present invention provide a DLL system that provides phase correction by determining a system offset based on phase differences among the delay lines. The offset is used as a part of a feedback loop to provide phase corrections for the delay lines. There are other embodiments as well.
Abstract:
The present invention is directed to data communication system and methods. More specifically, various embodiments of the present invention provide a communication interface that is configured to transfer data at high bandwidth using nDSQ format(s) over optical communication networks. In certain embodiments, the communication interface is used by various devices, such as spine switches and leaf switches, within a spine-leaf network architecture, which allows large amount of data to be shared among servers.
Abstract:
The voltage regulator device has a wide band amplifier having an input reference voltage, Vref and an input feedback voltage, Vfbk. The device has a source follower coupled to the wide band amplifier, the source follower coupled to an output of the wide band amplifier. The device has a VDD source, a regulator output, and a current source coupled to the source follower and the VDD source. The device has a low frequency path comprising a first transistor. The first transistor has a first gate, a first source, and a first drain. The first source is coupled to the VDD source. The first gate is coupled to a slow node, and the first drain is coupled to the regulator output. The low frequency path comprises a RC network, which has a capacitor, a resistor, and the slow node configured between the resistor and the capacitor. The device has a high frequency path comprising a second transistor. The second transistor has a second gate, a second source, and a second drain. The second source is coupled to the VDD source. The second gate is coupled to a fast node, and the second drain is coupled to the regulator output.