Abstract:
A field emitter array device includes a ceramic substrate member having a multiplicity of through conductive vias therein. An insulative material layer is located on the ceramic substrate member. An addressable array of gate and emitter line elements is located on the insulative material and is conductively coupled to the through substrate conductive vias. A backside connector is located on the ceramic substrate member and conductively coupled to the vias for connection of the ceramic substrate member with an array driver device for the addressable array of emitter and gate line elements. A field emitter array of field emitter elements on the insulative material layer of the ceramic substrate member which are operatively coupled with the addressable array of gate and emitter line elements.
Abstract:
In an electron gun for a color cathode ray tube including a cathode structure having three electrodes, a control electrode and a screen electrode, and a plurality of focus electrodes and last accelerating electrodes for forming electron lenses, the cathode structure includes a rimmed electrode member, an insulating member inserted into the electrode member and having an indentation formed on the upper surface thereof, a field emission array cell having a base member which is inserted into the indentation, and a plurality of supporting members installed at the insulating member for pressing down on the upper surface of the edge of the field emission array cell which is inserted into the indentation toward the upper surface of the insulating member. Thus, the strength of attachment between the insulating member and a field emission device is improved.
Abstract:
A field emission display includes a substrate (400) having a trench (402) formed therein, an emitter (418) formed in the trench (402), a dielectric layer (412) disposed on the substrate (400), and a grid material layer (406) disposed on the dielectric layer (412). The dielectric layer (412) is exposed by a planarization method. Consequently, the emitter (418) is necessarily aligned with the opening in the grid material layer (406). An electric field applied to the grid material layer (406) activates emitter (418) to emit electrons (416) to strike a faceplate (414).
Abstract:
Fe--Ni alloys for electron gun parts consisting of, all by weight, 30-55% Ni, 0.0010-0.200% S, up to 0.8% Mn, from not less than 0.005 to less than 0.5% in total of one or more elements selected from the group consisting of Ti, Mg, Ce and Ca, and the balance substantially Fe and unavoidable impurities, and electron gun parts, typically electron gun electrodes, made of the alloys by punching are provided. Controlling the grain size number to No. 7.0 or above is also effective. The Fe--Ni alloys of this invention for electron gun parts are remarkably improved in press punchability and can solve burring problems through the easy formation of sulfide inclusions of Ti, Mg, Ce, and Ca.
Abstract:
A cold cathode field emission device is described. A key feature of its design is that groups of microtips share a single conductive disk with a reliable ballast resistor being interposed between each of these conductive disks and the cathode conductor. Additionally, a resistor, rather than a conductor, is used to connect the gate conductive disk to the gate electrode. The latter is arranged so as not to overlap with the cathode electrode. The cathode and gate conductive disks ensure that the ballast resistance associated with each microtip is essentially the same.
Abstract:
A cathode structure and an electron gun for a CRT adopting the same are provided. The cathode structure has an external case, an insulating member filled in the external case, a plurality of pins fixedly inserted into the insulating member and of which end portions extend from the upper surface of the insulating member, a field emission device (FED) unit attached on the insulating member, and a wire for electrically connecting the FED unit to the end portions of the pins. Electrons are emitted by a field effect rather than by thermal electron emission.
Abstract:
In a comb-like or wedge-like electron emitting device, an emitter or both an emitter and an anode electrode are processed from a single-crystal silicon thin film of an SOI wafer. The single-crystal silicon thin film in portions other than the processed portion is removed so that the silicon oxide layer is dug down further slightly. A gate electrode for applying an electric field in order to draw electrons out of the emitter is provided in the dug-down portion. When the end and side faces of the emitter are formed as (111) faces by anisotropic etching in the condition that the single-crystal silicon thin film is oriented to a (100) face, the emitter has a sharp edge at about 55.degree. with respect to the substrate. In a conical electron emitting device, the gate electrode is constituted by a single-crystal silicon thin film of an SOI wafer so that a pyramid surrounded by the (111) faces is formed on the single-crystal silicon substrate.
Abstract:
A lateral field emission display in which a cathode and anode are laterally arrayed, and a fabricating method thereof, since the micro tip is formed to be sharp through the reactive ion etching method, efficiency of electron emission is better than a conventional wedge-type tip. Also, since focusing of an electron beam is accurately controlled, a relatively low-voltage driving is possible. Further, since the first gate is further provided above the cathode and the anode is formed to be higher than the second gate, a trace control of an electron-beam emitted from the micro tip is easy and focusing efficiency of the emitted electron beam to the anode is also improved.
Abstract:
An electron emission device which allows provision of a larger-current, sharper, higher-resolution beam of electrons, has a offset control electrode 10 which is located, on an insulating layer 9, above a gate electrode 7 formed on a plurality of cathodes 4. Each of the centers of the openings of the control electrode 10 is offset from the centers of the openings of the gate electrode 7.
Abstract:
A gated electron-emitter is fabricated according to the process in which charged particles are directed towards a track-susceptible layer (48) to form charged-particle tracks (50B.sub.1) through the track-susceptible layer. Apertures (52.sub.1) are formed through the track-susceptible layer by etching along the charged-particle tracks. A gate layer (46) is etched through the apertures to form gate openings (54.sub.1) through the gate layer. An insulating layer (24) is etched through the gate openings to form dielectric open spaces (56.sub.1, 94.sub.1, 106.sub.1, or 114.sub.1) through the insulating layer down to a resistive layer (22B) of an underlying conductive region (22). Electron-emissive elements (30B, 30/88D.sub.1, 98/102.sub.1, or 118.sub.1) are formed in the dielectric open spaces over the resistive layer.