Abstract:
A method of forming a sensor component includes forming a first layer over a sensor pad of a sensor of a sensor array. The first layer includes a first inorganic material. The method further includes forming a second layer over the first layer. The second layer includes a polymeric material. The method also includes forming a third layer over the second layer, the third layer comprising a second inorganic material; patterning the third layer; and etching the second layer to define a well over the sensor pad of the sensor array.
Abstract:
A container assembly includes a container at least partially bounding a chamber and having a wall with an opening extending therethrough. A tubular stem bounds a passageway and outwardly projects from the wall of the container so that the passageway communicates with the opening. A sparger includes a tubular member having a first end and an opposing second end and an interior surface bounding a passage extending therebetween. A gas permeable sparging member is secured to the first end of the tubular member so that gas passing through the tubular member from the second end passes out through the sparging sheet. A second flange encircles and radially outwardly projects from the tubular member, the second flange being secured to the stem so that at least a portion of the tubular member is disposed within the passageway of the tubular stem.
Abstract:
An optical instrument is provided for simultaneously illuminating two or more spaced-apart reaction regions with an excitation beam generated by a light source. A collimating lens can be disposed along a beam path between the light source and the reaction regions to form bundles of collimated excitation beams, wherein each bundle corresponds to a respective reaction region. Methods of analysis using the optical instrument are also provided.
Abstract:
Embodiments describe a non-transitory computer-readable storage medium encoded with instructions, executable by a processor, comprising instructions for a method for performing a biological workflow in silico comprising: presenting to a user a plurality of subroutines listed in a sequential order of the workflow, wherein at least two subroutines comprise two steps; providing the user ability to navigate to any subroutine and/or step, to select a subroutine, to view, set, or change one or more parameters associated with step/subroutine; providing option to display biomolecule(s) resulting from execution of the subroutines/steps; and providing an option to navigate to a prior subroutine and change a parameter of a step of the prior subroutine and execute the step of the prior subroutine, if the user is not satisfied with the displayed biomolecule(s). Computer systems and methods for performing a biological workflow in silico are also described.
Abstract:
A method for analyzing biological reaction systems is provided. The method includes receiving an image of a substrate including a plurality of reaction sites after a biological reaction has taken place. Next, the method includes removing a noise background from the first image. The method includes determining an initial position of each reaction site based on an intensity threshold to generate a initial position set, then refining the initial position set of each reaction site based on an expected pattern of locations of the plurality of reaction sites to generate a first refined position set. The method further includes determining a presence or absence of a fluorescent emission from each reaction site based on the first refined position set and the first image.
Abstract:
The disclosure provides compositions, kits, and methods for detecting a plurality of genes and associated variants in a sample from a subject with lung cancer. The compositions, kits, and methods include a set of oligonucleotides, typically primers and/or probes that can hybridize to identify a gene variant. The methods disclosed herein provide for a mutation status of a tumor to be determined and subsequently associated with an actionable treatment recommendation.
Abstract:
The invention generally relates to compositions and methods for designing and producing functional DNA binding effector molecules and associated customized services, tool kits and functional assays. In some aspects, the invention provides methods and tools for efficient assembly of customized TAL effector molecules. Furthermore, the invention relates to uses of TAL effector molecules and functional evaluation of such TAL by, for example, customized assays.
Abstract:
According to the present teachings, methods and compositions are provided that utilize at least one reference dye of formula (I): In some embodiments, a method comprises measuring a detection signal of a reporter dye and at least one reference dye of formula (I). In some embodiments, a composition comprises a reference dye of formula (1), a buffer, a selection of nucleotides and a protein.
Abstract:
Some embodiments describe a computer-implemented method for calibrating a fluorescent dye. The method can comprise imaging a sample holder, loaded into an instrument, at more than one channel. The sample holder can comprise a plurality of reaction sites and more than one dye type, with each dye occupying more than one reaction site. The method can further comprise identifying a peak channel for each dye on the sample holder, normalizing each channel to the peak channel for each dye, and producing a dye matrix that can comprise a set of dye reference values.
Abstract:
In one aspect, a thermal cycler system is disclosed. The thermal cycler can be comprised of a device housing and a cover that is operably connected to the device housing. The cover can include a handle portion, a device lid portion, a sample block platen and a link bar. The device lid portion is attached to the proximal side of the handle portion with a pin. The sample block platen is operably connected to the handle portion such that the sample block platen is positioned against the sample block when the handle portion is flush with the device lid portion and the cover is in a closed position. The link bar is operably connected to the device housing and the pin such that a distal side of the handle portion is elevated away from the device lid portion when the cover is moved to an open position.