Abstract:
Methods for forming a semiconductor structure are described. In an embodiment, the technique includes providing a donor wafer having a first semiconductor layer and a second semiconductor layer on the first layer and having a free surface; coimplanting two different atomic species through the free surface of the second layer to form a zone of weakness zone in the first layer; bonding the free surface of the second layer to a host wafer; and supplying energy to detach at the zone of weakness a semiconductor structure comprising the host wafer, the second layer and a portion of the first layer. Advantageously, the donor wafer includes a SiGe layer, and the co-implantation of atomic species is conducted according to implantation parameters adapted to enable a first species to form the zone of weakness in the SiGe layer, and to enable a second species to provide a concentration peak located beneath the zone of weakness in the donor wafer to thus minimize surface roughness resulting from detachment at the zone of weakness.
Abstract:
A method for producing a semiconductor structure that includes at least one useful layer on a substrate. This method includes providing a source substrate with a zone of weakness therein that defines a relatively thick useful layer between the zone of weakness and a front face of the source substrate; bonding the front face of the source substrate to a support substrate and detaching the useful layer from the source substrate at the zone of weakness to transfer the useful layer to the support substrate; implanting atomic species into a free face of the useful layer to a controlled mean implantation depth therein to form a zone of weakness within the useful layer that defines front and rear useful layers, with the rear useful layer contacting the source substrate and the front useful layer containing a greater concentration of defects; bonding a stiffening substrate to the free face of the front useful layer after implantation of the atomic species; and detaching the front useful layer from the rear useful layer along the zone of weakness to form a semiconductor structure comprising the support substrate and the rear useful layer thereon. The structures obtained can be used in the fields of electronics, optoelectronics or optics.
Abstract:
An automatic high-precision layer cutting device for separating a layer from a semiconductor substrate. The device includes a fixed positioning member for receiving at least a portion of a semiconductor substrate that has a weakened area therein and a peripheral annular notch located below the weakened area. The positioning member maintains the position of the substrate on a moveable support. A cutting mechanism having at least one blade is provided for contacting the substrate and inducing a cleaving wave therein. The cutting mechanism is operatively associated with the positioning member so that the as at least one blade contacts the annular notch, the positioning member prevents movement of the substrate and the moveable support moves away from the substrate to allow the cleaving wave to both divide the substrate at the notch into first and second parts and detach the layer from the substrate along the weakened area.
Abstract:
A stress absorbing microstructure assembly including a support substrate having an accommodation layer that has plurality of motifs engraved or etched in a surface, a buffer layer and a nucleation layer. The stress absorbing microstructure assembly may also include an insulating layer between the buffer layer and the nucleation layer. This assembly can receive thick epitaxial layers thereon with concern of causing cracking of such layers.
Abstract:
The present invention relates to a method for transferring a thin useful layer from a donor substrate having an ordered crystalline structure to a receiver substrate. The method includes creation of a weakened zone in the donor substrate to define the layer to be transferred from the donor substrate. The crystalline structure of a surface region of the donor substrate is disturbed so as to create a disturbed superficial region within the thickness of the donor substrate, and thus define a disturbance interface between the disturbed superficial region and a subjacent region of the donor substrate for which the crystalline structure remains unchanged. Next, the donor substrate is subjected to a recrystallization annealing in order to at least partial recrystallize of the disturbed region, starting from the crystalline structure of the subjacent region of the donor substrate, and to create a zone of crystalline defects in the plane of the disturbance interface. One or several species are introduced into the thickness of the donor substrate to create the weakened zone, with the species being introduced with introduction parameters that are adjusted to introduce a maximum number of species at the zone of crystalline defects.
Abstract:
A donor wafer resulting from a method of recycling the wafer after detaching at least one useful layer. The donor wafer includes a substrate; a buffer structure on the substrate; a protective layer associated with the buffer structure; and a post detachment layer located above the buffer structure and presenting projections or rough portions on its surface. The protective layer prevents removal of the entire buffer structure when the post detachment layer is removed.
Abstract:
The invention relates to a method of re-forming a useful layer on a donor wafer after taking off a useful layer formed of a material chosen from among semiconductor materials. The donor wafer includes in succession a substrate and a taking-off structure, the taking-off structure includes the taken-off useful layer before taking-off. The method includes a removal of material involving a portion of the donor wafer on the side where the useful layer has been taken off. The material is removed by mechanical means so as to preserve a portion of the taking-off structure to form at least one other useful layer which can be taken off after re-forming, without adding additional material to the wafer.
Abstract:
The invention relates to a process for producing an electronic structure that includes a thin layer of strained semiconductor material from a donor wafer. The donor wafer has a lattice parameter matching layer that includes an upper layer of a semiconductor material having a first lattice parameter and a film of semiconductor material having a second, nominal, lattice parameter that is substantially different from the first lattice parameter and that is strained by the matching layer. This process includes transfer of the film to a receiving substrate. The invention also relates to the semiconductor structures that can be produced by the process.
Abstract:
A substrate-assembly having a mechanical stress absorption system. The assembly includes two substrates, one of which has a mechanical stress absorbing system, such as a plurality of motifs that absorb thermoelastic stresses, to prevent cracking or destruction of the substrates or separation of one substrate from the other.
Abstract:
Methods for forming a semiconductor structure are described. In an embodiment, the technique includes providing a donor wafer having a first semiconductor layer and a second semiconductor layer on the first layer and having a free surface, implanting atomic species through the free surface of the second layer to form a zone of weakness zone in the first layer, and bonding the free surface of the second layer to a host wafer. The method also includes supplying energy to detach at the zone of weakness a semiconductor structure comprising the host wafer, the second layer and a portion of the first layer, conducting a bond strengthening step on the structure after detachment at a temperature of less than about 800° C. to improve the strength of the bond between the second layer and the host wafer, and selectively etching the first layer portion to remove it from the structure and to expose a surface of the second layer. The implanting step includes implantation parameters chosen to minimize surface roughness resulting from detachment at the zone of weakness.