Abstract:
In an example embodiment, an analog to digital converter (ADC) facilitating passive analog sample and hold is provided and includes a pair of binary weighted conversion capacitor arrays, a pair of sampling capacitors, and a plurality of switches that configure each conversion capacitor array and the sampling capacitors for a sampling phase, a charge transfer phase, and a bit trial phase. During the sampling phase, the sampling capacitors are decoupled from the conversion capacitors and coupled to an analog input voltage. During the charge transfer phase, the sampling capacitors are coupled to the conversion capacitors and decoupled from the analog input voltage. During the bit trial phase, the sampling capacitors are decoupled from the conversion capacitors.
Abstract:
In an example embodiment, an amplifier having high gain and high slew rate is provided and includes a pair of input transistors to which input voltage is applied, a pair of diode-connected loads coupled to the input transistors, at least one pair of current sources coupled to the diode-connected loads, and a bias control configured to turn off the at least one pair of current sources to enable high slew rate for the amplifier and to turn on the at least one pair of current sources to enable high gain for the amplifier. In specific embodiments, the current sources include transistors, the bias control controls a bias voltage to the current sources, and the bias voltage is driven to the supply voltage (VDD) to turn off the current sources.
Abstract:
An exemplary object detection method includes generating feature block components representing an image frame, and analyzing the image frame using the feature block components. For each feature block row of the image frame, feature block components associated with the feature block row are evaluated to determine a partial vector dot product for detector windows that overlap a portion of the image frame including the feature block row, such that each detector window has an associated group of partial vector dot products. The method can include determining a vector dot product associated with each detector window based on the associated group of partial vector dot products, and classifying an image frame portion corresponding with each detector window as an object or non-object based on the vector dot product. Each feature block component can be moved from external memory to internal memory once implementing the exemplary object detection method.
Abstract:
Delta-sigma modulators do not handle overload well, and often become unstable if the input goes beyond the full-scale range of the modulator. To provide overload protection, an improved technique embeds an overload detector in the delta sigma modulator. When an overload condition is detected, coefficient(s) of the delta sigma modulator is adjusted to accommodate for the overloaded input. The improved technique advantageously allows the delta sigma modulator to handle overload gracefully without reset, and offers greater dynamic range at reduced resolution. Furthermore, the coefficient(s) of the delta sigma modulator can be adjusted in such a way to ensure the noise transfer function is not affected.
Abstract:
A transconductance gain stage including a pair of gain transistors, each gain transistor having a base and an emitter, the emitter of each gain transistor electrically coupled to a degenerating resistor, and the emitter of each gain transistor connected to a gain resistor.
Abstract:
Digital-to-analog converters (DACs) are used widely in electronics. The DACs are usually not ideal and typically exhibits errors, e.g., static mismatch errors. This disclosure describes a digital calibration technique for DAC static mismatch in continuous-time delta-sigma modulators (CTDSMs). The methodology utilizes the DAC unit elements (UEs) themselves to measure each other's mismatch. There are no extra circuitries except for the logic design inside DAC drivers or comparators. The methodology is an attractive calibration technique for high performance CTDSMs, especially for high speed system in multi-gigahertz range with low over-sampling rate (OSR).
Abstract:
An example transconductance circuit is provided in accordance with one embodiment. The transconductance circuit can comprise: an output node; at least one transistor; a variable resistance; and a differential amplifier; wherein the at least one transistor and the variable resistance are in series connection with the output node, an output of the differential amplifier is connected to a control node of the at least one transistor, a first input of the amplifier is responsive to an input signal, and a second input of the amplifier is responsive to a voltage across the variable resistance. Such a circuit may overcome noise problems in transconductance circuits which operate over a wide range of input signals with a fixed resistor in series with the at least one transistor.
Abstract:
Example embodiments of this disclosure can provide an apparatus, a system, and a method of correcting for charge lost from a sampling capacitor as a result of an analog to digital conversion being performed. In an embodiment, there is provided a method of operating an analog to digital converter comprising at least a first sampling capacitor used to sample an input signal, where the method can further comprise a correction step of modifying the voltage across the at least first sampling capacitor, the correction step being performed prior to commencing an acquire phase.
Abstract:
This application discusses, among other things apparatus and methods for a voltage boost circuit. In an example, a voltage boost circuit can include first and second inverters, sharing a first supply node, and sharing a second supply node, a first charge transfer capacitor, configured to couple a first clock signal to the first inverter output, a second charge transfer capacitor, configured to couple a second clock signal to the second inverter output, the second clock signal being out-of-phase with the first clock signal, a first gate drive capacitor, configured to couple the first clock signal to the second inverter input, and a second gate drive capacitor, configured to couple the second clock signal to the first inverter input.
Abstract:
A multi-string DAC is described and comprises at least two DAC stages. Each DAC stage comprises a string of impedance elements and a switching network. A control loop is provided to control the Ron of the switching network and provide code dependent control of switches in a DAC switching network.