Abstract:
A chip integrated ion sensor is provided, which comprises a substrate having arranged thereon an electrolyte insulator semiconductor structure and a reference electrode. In particular, the electrolyte insulator semiconductor (EIS) structure may be formed on a chip already processed, i.e. the EIS structure may be formed in a Back End process on an already formed chip comprising a plurality of formed electronic components. In particular, the ion sensor may be adapted to form an ion concentration sensor, e.g. a pH sensor, i.e. may form a pH sensor. The reference electrode may be a non-polarizable electrode. In particular, the reference electrode may comprise Ag or AgCl as material.
Abstract:
A method is disclosed using a feedback loop for focused ultrasound application. The method includes the steps of determining a location of a target side within a body using ultrasound waves, applying focused ultrasound waves to the target site, determining a new location of the target site using further ultrasound waves, and adjusting the focused ultrasound waves in response to the new location of the target site.
Abstract:
An implantable medical system for electrical recording and or providing therapy to a plurality of tissue sites without damage to surrounding blood vessels is disclosed comprising: an implant body having a plurality of therapy elements, the elements being hingedly attached at one end to the surface of the body and releasably extendable outward from the surface of the body at the other end; a release mechanism for each of the elements; and a coating material covering the body and the elements; wherein upon dissolution of the coating material after implantation, the release mechanism is capable of causing the elements to extend outward at one end from the surface of the body and into a plurality of tissue sites without damage to the surrounding blood vessels. The method of implanting the system into a body is also disclosed.
Abstract:
Disclosed is a semiconductor device comprising a stack of patterned metal layers separated by dielectric layers, the stack comprising a first conductive support structure and a second conductive support structure and a cavity in which an inertial mass element comprising at least one metal portion is conductively coupled to the first support structure and the second support structure by respective conductive connection portions, at least one of said conductive connection portions being designed to break upon the inertial mass element being exposed to an acceleration force exceeding a threshold defined by the dimensions of the conductive connection portions. A method of manufacturing such a semiconductor device is also disclosed.
Abstract:
Disclosed is a semiconductor device comprising a stack of patterned metal layers separated by dielectric layers, the stack comprising a first conductive support structure and a second conductive support structure and a cavity in which an inertial mass element comprising at least one metal portion is conductively coupled to the first support structure and the second support structure by respective conductive connection portions, at least one of said conductive connection portions being designed to break upon the inertial mass element being exposed to an acceleration force exceeding a threshold defined by the dimensions of the conductive connection portions. A method of manufacturing such a semiconductor device is also disclosed.
Abstract:
A sensor (2) for sensing a first substance and a second substance, the sensor comprising first (3) and second (5) sensor components each comprising a first material (20), the first material being sensitive to both the first substance and the second substance, the sensor further comprising a barrier (18) for preventing the second substance from passing into the second sensor component (5).
Abstract:
An electrochemical sensor device including a sensor chip having an integrated electrochemical sensor element; and a substrate having a first surface on which the sensor chip is mounted, the substrate comprising a reference electrode structure for the integrated electrochemical sensor element, the reference electrode structure connected to the sensor chip via an electrical connection on the first surface of the substrate.
Abstract:
Disclosed is an integrated circuit comprising a substrate (10) carrying a plurality of circuit elements; a metallization stack (12, 14, 16) interconnecting said circuit elements, said metallization stack comprising a patterned upper metallization layer comprising a first metal portion (20) and a second metal portion (21); a passivation stack (24, 26, 28) covering the metallization stack; a gas sensor including a sensing material portion (32, 74) on the passivation stack; a first conductive portion (38) extending through the passivation stack connecting a first region of the sensing material portion to the first metal portion; and a second conductive portion (40) extending through the passivation stack connecting a second region of the sensing material portion to the second metal portion. A method of manufacturing such an IC is also disclosed.
Abstract:
A sensor, electrically connected to transponder, is calibrated in an environment of operational use of the transponder. The calibrating uses as a reference a value of a parameter representative of the environment.
Abstract:
A biocompatible electrode is manufactured by depositing filling metal 36 and etching back the filling metal to the surface of the surrounding insulator 30. Then, a further etch forms a recess 38 at the top of the via 32. An electrode metal 40 is then deposited and etched back to fill the recess 38 and form biocompatible electrode 42. In this way, a planar biocompatible electrode is achieved. The step of etching to form the recess may be carried out in the same CMP tool as is used to etch back the filling metal 36. A hydrogen peroxide etch may be used.