Abstract:
A method for reading/writing a chip in a USB type-C cable comprises converting a read/write command into unstructured vendor defined message (UVDM) that is conforming to a USB power delivery specification. Such UVDM will be delivered to the chip via a type-C configuration channel interface. The chip analyzes the UVDM to acquire the read/write command and reads or modifies the content of a non-volatile memory in the chip according to the read/write command. Due to use of the type-C configuration channel interface, which is inherent in the USB type-C cable, to read/write the chip, it needs no extra interface which otherwise increases costs.
Abstract:
An integrated circuit packaging structure includes a chip, an electrical bump, a heat dissipation bump, a lead frame, and a sealant. The chip includes an active surface and an electronic component that is formed by using a semiconductor process. The electrical bump is electrically connected to the electronic component through the active surface. The heat dissipation bump is connected to the active surface. The lead frame is electrically connected to the electrical bump. The sealant covers the chip, the lead frame, and the electrical bump, wherein the heat dissipation bump and a part of the lead frame are exposed without being covered. The height of the heat dissipation bump relative to the active surface is unequal to that of the electrical bump relative to the active surface.
Abstract:
A power off delay circuit includes a switch connected between an external power input terminal and an internal power supply terminal, a capacitor connected to the internal power supply terminal, and a hysteresis comparator to switch the switch according to the voltages of the external power input terminal and the internal power supply terminal. During on-time of the switch, the external power input terminal is connected to the internal power supply terminal and the capacitor can be charged by the external power source. When the switch is off, the capacitor provides electric power for an internal circuit. Application of the power off delay circuit to an audio system may eliminate the turn-off pops of the audio system.
Abstract:
A driving signal generator for driving a transducer includes: an input terminal for receiving a control signal; and a digital filter, coupled to the input terminal, for generating a driving signal to drive the transducer in response to the control signal. The digital filter is a notch filter, and the transfer function of the digital filter is related to the characteristics of the transducer.
Abstract:
A switching power converting apparatus includes a voltage conversion module, a detecting unit, and a switching signal generating unit. The voltage conversion module converts an input voltage into an output voltage associated with a secondary side current, which flows through a secondary winding of a transformer and is generated based on a switching signal. The detecting unit generates a detecting signal based on the output voltage and a predetermined reference voltage. The switching signal generating unit generates the switching signal based on the detecting signal and an adjusting signal so that the secondary side current is gradually increased during a start period of the switching power converting apparatus.
Abstract:
A power-factor-improving circuit and method for an offline converter block the DC component and obtain the AC component of an input voltage of the offline converter. The AC component is superpositioned onto a DC bias signal to generate a dimming signal for the offline converter to adjust an output current of the offline converter. The offline converter has a high power factor due to the dimming signal with the AC component of the input voltage. In addition, the average of the dimming signal is determined by the DC bias signal, hence the output current can be precisely controlled according to the DC bias signal.
Abstract:
A method for brightness control, adapted to a light emitting device emitting a light of an output brightness, comprises: setting the output brightness to be an initial value, and controlling the light emitting device emitting the light accordingly; setting a target value, and controlling the output brightness changing from the initial value toward the target value with the brightness changing rate of the brightness zone corresponding to the initial value; controlling the output brightness changing toward the target value with the following brightness changing rate when the output brightness crossing one of the brightness thresholds and entering the following brightness zone, wherein the following brightness changing rate corresponds to the following brightness zone; stopping changing the output brightness when reaching the target value.
Abstract:
A power management unit, adapted to a wireless power supplying unit, for switching between input powers and providing a rated voltage or a variable flow current is provided. The power management unit includes a rectifying unit, a regulating unit, and a control unit. The rectifying unit converts AC power into DC power. The regulating unit is connected to the rectifying unit and generates a stable rated voltage or a variable flow current. The control unit is connected to the regulating unit and controls the input power driving the regulating unit. In addition, an apparatus and a method for a wireless power supplying unit are provided.
Abstract:
An AC-to-DC power converting apparatus includes a power factor correction circuit generating a DC output voltage based on a rectified voltage obtained through rectifying an AC input voltage and on a PWM signal generated based on an adjustment current and a predetermined ramp signal. A multiplier-divider circuit includes: a ramp generating unit generating a ramp signal based on a clock signal and on a first detection voltage associated with the rectified voltage; a control unit generating a control signal based on the clock signal, the ramp signal, and a detection voltage generated based on the DC output voltage; and an output unit generating an adjustment signal based on an input signal associated with the rectified voltage and the control signal.
Abstract:
A bootstrap circuit includes: a charging voltage source; a charging diode, having an anode coupled to the charging voltage source; a high-voltage transistor, having a control terminal defined as a first connecting node and a channel coupled between a cathode of the charging diode and a bootstrap capacitor; a logic control circuit, having a first and a second logic outputs, and a logic input for receiving a charging command; a high-voltage control transistor, having a control terminal defined as a second connecting node and a channel coupled between charging voltage source and the first connecting node; a cut-off resistor, coupled between the first and the second connecting nodes; a charging control transistor, having a channel coupled between the second connecting node and a ground terminal, and a control terminal coupled to the second logic output; a control capacitor, coupled between the first connecting node and the first logic output.