Abstract:
Methods of etching HAR features in a dielectric layer are described. In one embodiment, a substrate is provided into an etch chamber. The substrate has a patterned mask disposed on a dielectric layer formed thereon where the patterned mask has openings. A gas mixture is provided into the etch chamber, the gas mixture includes CO, O2, a fluorocarbon gas, and an optional inert gas. A plasma is formed from the gas mixture. Features are etched in the dielectric layer through the openings in the presence of the plasma
Abstract:
A significantly improved low-k dielectric patterning method is described herein using plasma comprising an oxygen radical source and a silicon source to remove the photo-resist layer.
Abstract:
A method of depositing a silicon oxide layer over a substrate includes providing a substrate to a deposition chamber. A first silicon-containing precursor, a second silicon-containing precursor and a NH3 plasma are reacted to form a silicon oxide layer. The first silicon-containing precursor includes at least one of Si—H bond and Si—Si bond. The second silicon-containing precursor includes at least one Si—N bond. The deposited silicon oxide layer is annealed.
Abstract:
Methods of curing a silicon oxide layer on a substrate are provided. The methods may include the processes of providing a semiconductor processing chamber and a substrate and forming an silicon oxide layer filling a portion of a trench on the substrate, the silicon oxide layer including carbon species as a byproduct of formation. The methods also include introducing an acidic vapor into the semiconductor processing chamber, the acidic vapor reacting with the silicon oxide layer to remove the carbon species from the silicon oxide layer. The methods may further include depositing additional silicon oxide over the cured silicon oxide to fill the trench. The methods may also include removing the acidic vapor from the semiconductor processing chamber.
Abstract:
A method for depositing a silicon nitride based dielectric layer is provided. The method includes introducing a silicon precursor and a radical nitrogen precursor to a deposition chamber. The silicon precursor has a N—Si—H bond, N—Si—Si bond and/or Si—Si—H bond. The radical nitrogen precursor is substantially free from included oxygen. The radical nitrogen precursor is generated outside the deposition chamber. The silicon precursor and the radical nitrogen precursor interact to form the silicon nitride based dielectric layer.
Abstract:
The present invention generally provides a method for depositing a low dielectric constant film using an e-beam treatment. In one aspect, the method includes delivering a gas mixture comprising one or more organosilicon compounds and one or more hydrocarbon compounds having at least one cyclic group to a substrate surface at deposition conditions sufficient to deposit a non-cured film comprising the at least one cyclic group on the substrate surface. The method further includes substantially removing the at least one cyclic group from the non-cured film using an electron beam at curing conditions sufficient to provide a dielectric constant less than 2.5 and a hardness greater than 0.5 GPa.
Abstract:
A silicon oxide film is deposited on a substrate disposed in a substrate processing chamber. The substrate has a gap formed between adjacent raised surfaces. A liquid Si—C—O—H precursor is vaporized. A flow of the vaporized liquid Si—C—O—H precursor is provided to the substrate processing chamber. A gaseous oxidizer is also flowed to the substrate processing chamber. A deposition plasma is generated inductively from the precursor and the oxidizer in the substrate processing chamber, and the silicon oxide film is deposited over the substrate and within the gap with the deposition plasma.
Abstract:
A method of forming a silicon carbide layer for use in integrated circuit fabrication processes is provided. The silicon carbide layer is formed by reacting a gas mixture comprising a silicon source, a carbon source, and a dopant in the presence of an electric field. The as-deposited silicon carbide layer has a compressibility that varies as a function of the amount of dopant present in the gas mixture during later formation.
Abstract:
Methods and apparatus for protecting the dielectric layer sidewalls of openings, such as vias and trenches, in semiconductor substrates are provided. A pre-liner and a liner are deposited over the sidewalls of the openings as part of integrated processing sequences that either do not remove the photoresist until subsequent processing or remove the photoresist with a plasma etch that does not contaminate the sidewalls of the openings.
Abstract:
A method of depositing a low dielectric constant film on a substrate. In one embodiment, the method includes the steps of positioning the substrate in a deposition chamber, providing a gas mixture to the deposition chamber, in which the gas mixture is comprised of one or more cyclic organosilicon compounds, one or more aliphatic compounds and one or more oxidizing gases. The method further includes reacting the gas mixture in the presence of an electric field to form the low dielectric constant film on the semiconductor substrate. The electric field is generated using a very high frequency power having a frequency in a range of about 20 MHz to about 100 MHz.