Abstract:
In the measurement of properties of a wafer substrate, such as Critical Dimension or overlay a sampling plan is produced 2506 defined for measuring a property of a substrate, wherein the sampling plan comprises a plurality of sub-sampling plans. The sampling plan may be constrained to a predetermined fixed number of measurement points and is used 2508 to control an inspection apparatus to perform a plurality of measurements of the property of a plurality of substrates using different sub-sampling plans for respective substrates, optionally, the results are stacked 2510 to at least partially recompose the measurement results according to the sample plan.
Abstract:
Disclosed is a method of measuring a target, associated substrate comprising a target and computer program. The target comprises overlapping first and second periodic structures. The method comprising illuminating the target with measurement radiation and detecting the resultant scattered radiation. The pitch of the second periodic structure is such, relative to a wavelength of the measurement radiation and its angle of incidence on the target, that there is no propagative non-zeroth diffraction at the second periodic structure resultant from said measurement radiation being initially incident on said second periodic structure. There may be propagative non-zeroth diffraction at the second periodic structure which comprises further diffraction of one or more non-zero diffraction orders resultant from diffraction by the first periodic structure. Alternatively, the detected scattered radiation may comprise non-zero diffraction orders obtained from diffraction at said the periodic structure which have been disturbed in the near field by the second periodic structure.
Abstract:
A method of calculating process corrections for a lithographic tool, and associated apparatuses. The method comprises measuring process defect data on a substrate that has been previously exposed using the lithographic tool; fitting a process signature model to the measured process defect data, so as to obtain a model of the process signature for the lithographic tool; and using the process signature model to calculate the process corrections for the lithographic tool.
Abstract:
A method of controlling a semiconductor manufacturing process, the method including: obtaining first metrology data based on measurements performed after a first process step; obtaining second metrology data based on measurements performed after the first process step and at least one additional process step; estimating a contribution to the process of: a) a control action which is at least partially based on the second metrology data and/or b) the at least one additional process step by using at least partially the second metrology data; and determining a Key Performance Indicator (KPI) or a correction for the first process step using the first metrology data and the estimated contribution.
Abstract:
Substrates to be processed are partitioned based on pre-processing data that is associated with substrates before a process step. The data is partitioned using a partition rule and the substrates are partitioned into subsets in accordance with subsets of the data obtained by the partitioning. Corrections are applied, specific to each subset. The partition rule is obtained using decision tree analysis on a training set of substrates. The decision tree analysis uses pre-processing data associated with the training substrates before they were processed, and post-processing data associated with the training substrates after being subject to the process step. The partition rule that defines the decision tree is selected from a plurality of partition rules based on a characteristic of subsets of the post-processing data. The associated corrections are obtained implicitly at the same time.
Abstract:
A method, system and program for determining a fingerprint of a parameter. The method includes determining a contribution from a device out of a plurality of devices to a fingerprint of a parameter. The method includes obtaining parameter data and usage data, wherein the parameter data is based on measurements for multiple substrates having been processed by the plurality of devices, and the usage data indicates which of the devices out of the plurality of the devices were used in the processing of each substrate; and determining the contribution using the usage data and parameter data.
Abstract:
A method to change an etch parameter of a substrate etching process, the method including: making a first measurement of a first metric associated with a structure on a substrate before being etched; making a second measurement of a second metric associated with a structure on a substrate after being etched; and changing the etch parameter based on a difference between the first measurement and the second measurement.
Abstract:
A lithographic process is performed on a set of semiconductor substrates consisting of a plurality of substrates. As part of the process, the set of substrates is partitioned into a number of subsets. The partitioning may be based on a set of characteristics associated with a first layer on the substrates. A fingerprint of a performance parameter is then determined for at least one substrate of the set of substrates. Under some circumstances, the fingerprint is determined for one substrate of each subset of substrates. The fingerprint is associated with at least the first layer. A correction for the performance parameter associated with an application of a subsequent layer is then derived, the derivation being based on the determined fingerprint and the partitioning of the set of substrates.
Abstract:
A lithographic process is performed on a set of semiconductor substrates consisting of a plurality of substrates. As part of the process, the set of substrates is partitioned into a number of subsets. The partitioning may be based on a set of characteristics associated with a first layer on the substrates. A fingerprint of a performance parameter is then determined for at least one substrate of the set of substrates. Under some circumstances, the fingerprint is determined for one substrate of each subset of substrates. The fingerprint is associated with at least the first layer. A correction for the performance parameter associated with an application of a subsequent layer is then derived, the derivation being based on the determined fingerprint and the partitioning of the set of substrates.
Abstract:
In the measurement of properties of a wafer substrate, such as Critical Dimension or overlay a sampling plan is produced defined for measuring a property of a substrate, wherein the sampling plan comprises a plurality of sub-sampling plans. The sampling plan may be constrained to a predetermined fixed number of measurement points and is used to control an inspection apparatus to perform a plurality of measurements of the property of a plurality of substrates using different sub-sampling plans for respective substrates, optionally, the results are stacked to at least partially recompose the measurement results according to the sample plan.