摘要:
A method for filling a trench within a silicon substrate. There is first provided a silicon substrate having a trench formed therein. There is then oxidized thermally the silicon substrate to form within the trench a thermal silicon oxide trench liner layer. There is then formed upon the thermal silicon oxide trench liner layer a conformal silicon oxide intermediate layer formed through a plasma enhanced chemical vapor deposition (PECVD) method employing a silane silicon source material. Finally, there is then formed upon the conformal silicon oxide intermediate layer a gap filling silicon oxide trench fill layer through an ozone assisted sub-atmospheric pressure thermal chemical vapor deposition (SACVD) method employing an ozone oxidant and a tetra-ethyl-ortho-silicate (TEOS) silicon source material. To provide improved properties of the gap filling silicon oxide trench fill layer the thermal silicon oxide trench liner layer may be treated with a nitrogen containing plasma prior to forming the conformal silicon oxide intermediate layer thereupon.
摘要:
This invention provides a method for forming dense electrode patterns having a high aspect ratio in a conductor metal layer. The method uses silicon nitride deposited using plasma enhanced chemical vapor deposition, PECVD, as an etch stop mask to protect the conductor metal and anti reflection coating when etching the electrode patterns. The PECVD silicon nitride is also used a mask to eliminate pattern dependence when forming inter-metal dielectric layers. The PECVD silicon nitride is also used as an etch stop mask when forming vias in the inter-metal dielectric for electrical conduction between electrode pattern layers.
摘要:
A method for forming a via through a dielectric layer within a microelectronics fabrication. There is first provided a substrate having a contact region formed therein. There is then formed upon the substrate and covering the contact region a blanket first dielectric layer formed of a first dielectric material which is not susceptible to etching with an oxygen containing plasma. There is then formed upon the blanket first dielectric layer a blanket second dielectric layer formed of a second dielectric material which is susceptible to etching within the oxygen containing plasma. There is then formed upon the blanket second dielectric layer a blanket hard mask layer formed from a hard mask material which is not susceptible to etching within the oxygen containing plasma. There is then formed upon the blanket hard mask layer a patterned first photoresist layer which leaves exposed a portion of the blanket hard mask layer greater than and completely overlapping an areal deminsion of a via to be formed through the blanket first dielectric layer to access the contact layer. There is then etched while employing a first plasma etch method the blanket hard mask layer to form a patterned hard mask layer defining a first trench formed through the patterned hard mask layer. There is then etched while employing a second plasma etch method and at least the patterned hard mask layer the blanket second dielectric layer to form a patterned second dielectric layer having a second trench formed therethrough, where the second plasma etch method employs the oxygen containing plasma which preferably simultaneously strips the patterned first photoresist layer. There is then formed over at least the patterned second dielectric layer a patterned second photoresist layer which defines the location of the via to be formed through the blanket first dielectric layer. There is then etched while employing a third plasma etch method and the patterned second photoresist layer as a third etch mask layer the via through the blanket first dielectric layer.
摘要:
A new method of reducing copper hillocks in copper metallization is described. An opening is made through a dielectric layer overlying a substrate on a wafer. A copper layer is formed overlying the dielectric layer and completely filling the opening. The copper layer is polished back to leave the copper layer only within the opening. Copper hillocks are reduced by: coating an oxide layer over the copper layer and the dielectric layer, thereafter heating the wafer using NH3 plasma, and thereafter depositing a capping layer overlying the oxide layer wherein the time lapse between polishing back the copper layer and depositing the capping layer is less than one day (24 hours).
摘要:
A method to planarize the surface of a semiconductor substrate having shallow trench isolation (STI) reduces erosion of a silicon nitride planarization stop layer, reduces dishing of large areas of the shallow trench isolation, and prevents under polishing of the surface of the semiconductor substrate that will leave portions of the silicon dioxide that fills the shallow trenches covering the silicon nitride planarization stop exposed, is described. The method to planarize the surface of a semiconductor substrate having shallow trenches begins by chemical/mechanical planarization polishing at a first product of platen pressure and platen speed to planarize the semiconductor substrate. Polishing at a first product of platen pressure and platen speed will cause a high rate of material removal with low selectivity to increase production throughput. The silicon nitride stop layer will be examined to determine an end point exposure of the silicon nitride stop layer. When the end point exposure of the silicon nitride stop layer is reached, chemical/mechanical planarization polishing at a low product of platen pressure and platen speed is started to planarize the semiconductor substrate of slow over polish to control thickness of a trench oxide of the shallow trench isolation to reduce dishing and minimize erosion. The method further has the step of buffing the surface of the semiconductor substrate to remove any residue from the chemical/mechanical planarization polishing and to remove any microscratches from the surface of the semiconductor substrate.
摘要:
A method for forming for use within an integrated circuit a gap filling sandwich composite dielectric layer construction, and an integrated circuit having formed therein the gap filling sandwich composite dielectric layer construction. To practice the method, there is first provided a substrate having formed thereover a patterned layer. There is then formed upon the patterned layer a first conformal dielectric layer through a first plasma enhanced chemical vapor deposition (PECVD) method employing a first radio frequency power optimized primarily to limit plasma induced damage to the substrate and the patterned layer. The first radio frequency power is also optimized secondarily to limit moisture permeation through the first conformal dielectric layer. There is then formed upon the first conformal dielectric layer a gap filling dielectric layer. Finally, there is formed upon the gap filling dielectric layer a second conformal dielectric layer through a second plasma enhanced chemical vapor deposition (PECVD) method employing a second radio frequency power optimized primarily to limit moisture permeation through the second conformal dielectric layer.
摘要:
Process sequences used to simultaneously form a first dielectric gate layer for a first group of MOSFET elements, and a second dielectric gate layer for a second group of MOSFET elements, with the thickness of the first dielectric gate layer different than the thickness of the second gate dielectric layer, has been developed. A first iteration of this invention entails a remote plasma nitridization procedure used to form a thin silicon nitride layer on a bare, first portion of a semiconductor substrate, while simultaneously forming a thin silicon oxynitride layer on the surface of a first silicon dioxide layer, located on second portion of the semiconductor substrate. A thermal oxidation procedure than results in the formation of a thin second silicon dioxide layer, on the first portion of the semiconductor substrate, underlying the thin silicon nitride layer, while the first silicon dioxide layer, underlying the silicon oxynitride component of the composite dielectric layer, only increases slightly in thickness. A second iteration of this invention features the formation of a silicon nitride—first silicon dioxide, composite gate layer, on a first portion of a semiconductor substrate, with the composite gate layer used to retard oxidation during a thermal oxidation procedure used growth to form a second silicon dioxide layer, on a second portion of the semiconductor substrate.
摘要:
Cu, for its rather loe resistivity, will be widely used in sub-quarter micron meter ULSI devices. However, it is well known that Cu is easy to be corroded as exposed in air. In packaging of chips the bonding pads making of Cu will thus oxides. In addition, the reaction between Au-ball and Cu pads is very poor. On the other hand, a native AlOx layer, about 3-4 nm in thickness, will form as Al exposes in air; the formed layer is inert and is capable of protecting Al from corrosion. Furthermore, the reaction between Au-ball and Al was very well. Therefore, with the methods of the present invention, Al or AlCu as a glue and protection layer is implemented on Cu bonding pads for successful Au wiring.
摘要:
A method for forming upon a substrate employed within a microelectronics fabrication a dieletric layer with improved physical properties. There is first provided a substrate. There is then formed over the substrate a series of lines which constitute a patterned microelectronics layer. There is then formed over the patterned microelectronics layer and substrate a conformal dielectric layer. There is then formed over the substrate a second dielectric layer. There is then formed over the substrate a third dielectric layer formed of silicon oxide dielectric material employing high density plasma chemical vapor deposition (HDP-CVD) to complete a composite inter-level metal dielectric (IMD) layer. A fourth dielectric layer formed employing silicon containing dielectric material may be formed over the substrate and third dielectric layer to complete an inter-level metal dielectric (IMD) layer. The fourth dielectric layer is inhibited from cracking by the presence of the third silicon oxide dielectric layer formed by HDP-CVD method.
摘要:
A method for selectively depositing a silicon oxide insulator spacer layer between multi-layer patterned metal stacks within an integrated circuit. Formed upon a semiconductor substrate is a silicon oxide insulator substrate layer which is formed through a Plasma Enhanced Chemical Vapor Deposition (PECVD) process. Upon the silicon oxide insulator substrate layer are formed multi-layer patterned metal stacks. The multi-layer patterned metal stacks have a top barrier metal layer formed from titanium nitride and a lower-lying conductor metal layer formed from an aluminum containing alloy. Formed selectively upon the portions of the silicon oxide insulator substrate layer exposed through the multi-layer patterned metal stacks and upon the edges of the aluminum containing alloy exposed through the multi-layer patterned metal stacks is a silicon oxide insulator spacer layer. The silicon oxide insulator spacer layer is formed through an ozone assisted Chemical Vapor Deposition (CVD) process employing Tetra Ethyl Ortho Silicate as the silicon source material. The silicon oxide insulator spacer layer is formed for a deposition time not exceeding an incubation time for forming the silicon oxide insulator spacer layer upon the top barrier metal layer formed from titanium nitride.