摘要:
Process sequences used to simultaneously form a first dielectric gate layer for a first group of MOSFET elements, and a second dielectric gate layer for a second group of MOSFET elements, with the thickness of the first dielectric gate layer different than the thickness of the second gate dielectric layer, has been developed. A first iteration of this invention entails a remote plasma nitridization procedure used to form a thin silicon nitride layer on a bare, first portion of a semiconductor substrate, while simultaneously forming a thin silicon oxynitride layer on the surface of a first silicon dioxide layer, located on second portion of the semiconductor substrate. A thermal oxidation procedure than results in the formation of a thin second silicon dioxide layer, on the first portion of the semiconductor substrate, underlying the thin silicon nitride layer, while the first silicon dioxide layer, underlying the silicon oxynitride component of the composite dielectric layer, only increases slightly in thickness. A second iteration of this invention features the formation of a silicon nitride—first silicon dioxide, composite gate layer, on a first portion of a semiconductor substrate, with the composite gate layer used to retard oxidation during a thermal oxidation procedure used growth to form a second silicon dioxide layer, on a second portion of the semiconductor substrate.
摘要:
Cu, for its rather loe resistivity, will be widely used in sub-quarter micron meter ULSI devices. However, it is well known that Cu is easy to be corroded as exposed in air. In packaging of chips the bonding pads making of Cu will thus oxides. In addition, the reaction between Au-ball and Cu pads is very poor. On the other hand, a native AlOx layer, about 3-4 nm in thickness, will form as Al exposes in air; the formed layer is inert and is capable of protecting Al from corrosion. Furthermore, the reaction between Au-ball and Al was very well. Therefore, with the methods of the present invention, Al or AlCu as a glue and protection layer is implemented on Cu bonding pads for successful Au wiring.
摘要:
Cu, for its rather low resistivity, will be widely used in sub-quarter micron meter ULSI devices. However, it is well known that Cu is easy to be corroded as exposed in air. In packaging of chips the bonding pads making of Cu will thus oxides. In addition, the reaction between Au-ball and Cu pads is very poor. On the other hand, a native AlOx layer, about 3-4 nm in thickness, will form as Al exposes in air; the formed layer is inert and is capable of protecting Al from corrosion. Furthermore, the reaction between Au-ball and Al was very well. Therefore, with the methods of the present invention, Al or AlCu as a glue and protection layer is implemented on Cu bonding pads for successful Au wiring.
摘要:
Within a method for forming a microelectronic fabrication, there is first provided a substrate. There is then formed over the substrate a microelectronic device passivated with a patterned first dielectric layer in turn annularly surrounded by a patterned second dielectric layer. There is also formed over the substrate a patterned conductor layer separated from the microelectronic device by the patterned first dielectric layer and the patterned second dielectric layer. Within the method: (1) the patterned first dielectric layer is formed from a first dielectric material having a first diffusion coefficient with respect to a conductor material from which is formed the patterned conductor layer; (2) the patterned second dielectric layer is formed from a second dielectric material having a second diffusion coefficient with respect to the conductor material from which is formed the patterned conductor layer; and (3) the first diffusion coefficient is greater than the second diffusion coefficient.
摘要:
A process for forming an ultra-thin, silicon dioxide, gate insulator layer, for narrow channel length MOSFET devices, has been developed. The process features the use of a two step, in situ steam generated, (ISSG), procedure, to grow a silicon dioxide layer at a physical thickness between about 10 to 20 Angstroms, offering a gate insulator layer with a reduction in leakage current, during standby, or operating modes, when compared to counterpart silicon dioxide layers, formed without the use of the two step, ISSG procedure. The two step, ISSG procedure is comprised of a first step, featuring a steam oxidation, and an in situ anneal, in a nitrous oxide ambient, followed by the second step of the two step, ISSG procedure, performed in situ, in the same furnace used for the first step of the two step, ISSG procedure, with the second step of the two step, ISSG procedure again comprised of a steam oxidation, followed by an in situ anneal, performed in a nitrous oxide ambient.
摘要:
A process used to create a non-smooth, top surface topography, for a semiconductor substrate, needed to improve the adhesion between a protective molding compound, and the underlying top surface of the semiconductor substrate, has been developed. The process features the creation of the non-smooth, top surface topography, including either: recessed, or etched back, copper damascene structures, in an insulator layer; or copper damascene structures, in a recessed, or etched back, insulator layer. The recessing of the copper damascene structures, or of the insulator layer, is accomplished via selective, dry or wet etch procedures. After formation of a gold wire bond, on the top surface of a copper damascene structure, a protective molding compound is applied, to the underlying, non-smooth, top surface topography.
摘要:
A semiconductor substrate has a first copper layer, on which an etch stop layer and a dielectric layer are successively formed. A second copper layer penetrates the dielectric layer and the etch stop layer to electrically connect to the first metal layer. The etch stop layer has a dielectric constant smaller than 3.5, and the dielectric layer has a dielectric constant smaller than 3.0.
摘要:
A semiconductor substrate has a first copper layer, on which an etch stop layer and a dielectric layer are successively formed. A second copper layer penetrates the dielectric layer and the etch stop layer to electrically connect to the first metal layer. The etch stop layer has a dielectric constant smaller than 3.5, and the dielectric layer has a dielectric constant smaller than 3.0.
摘要:
Within a method for fabricating a semiconductor integrated circuit microelectronic fabrication there is first provided a first semiconductor substrate. There is then formed over the first semiconductor substrate at least one microelectronic device to form from the first semiconductor substrate a partially fabricated semiconductor integrated circuit microelectronic fabrication. Within the method there is also provided a second substrate. There is also formed over the second substrate, in inverted order, a dielectric isolated metallization pattern intended to mate with the partially fabricated semiconductor integrated circuit microelectronic fabrication. Finally, there is then laminated the partially fabricated semiconductor integrated circuit microelectronic fabrication with the second substrate to mate the partially fabricated semiconductor integrated circuit microelectronic fabrication with the dielectric isolated metallization pattern to thus form a laminated completely fabricated semiconductor integrated circuit microelectronic fabrication. The method provides for enhanced efficiency when fabricating semiconductor integrated circuit microelectronic fabrications.
摘要:
A method for forming an MIM capacitor, comprising the following steps. A semiconductor structure having an exposed lower metal damascene is provided. A capacitor layer is formed over the semiconductor structure and the exposed lower metal damascene. An organic etch stop layer is formed upon the capacitor layer. An IMD layer is formed upon the organic etch stop layer. The IMD layer is etched with a first etch highly selective to the IMD layer as compared to the organic etch stop layer, to form an IMD trench exposing a portion of the organic etch stop layer. The exposed portion of the organic etch stop layer is etched with a second etch method highly selective to the exposed portion of the organic etch stop layer as compared to the capacitor layer, to expose a portion of the capacitor layer. An upper metal damascene is formed upon the exposed portion of the capacitor layer and within the IMD trench to complete formation of the MIM capacitor.