Abstract:
A PMOS device less affected by negative bias time instability (NBTI) and a method for forming the same are provided. The PMOS device includes a barrier layer over at least a portion of a gate structure, a gate spacer, and source/drain regions of a PMOS device. A stressed layer is then formed over the barrier layer. The barrier layer is preferably an oxide layer and is preferably not formed for NMOS devices.
Abstract:
A method of forming multiple gate oxide thicknesses on active areas that are separated by STI isolation regions on a substrate. A first layer of oxide is grown to a thickness of about 50 Angstroms and selected regions are then removed. A second layer of oxide is grown that is thinner than first growth oxide. For three different gate oxide thicknesses, selected second oxide growth regions are nitridated with a N2 plasma which increases the dielectric constant of a gate oxide and reduces the effective oxide thickness. To achieve four different gate oxide thicknesses, nitridation is performed on selected first growth oxides and on selected second growth oxide regions. Nitridation of gate oxides also prevents impurity dopants from migrating across the gate oxide layer and reduces leakage of standby current. The method also reduces corner loss of STI regions caused by HF etchant.
Abstract:
A method of defining a conductive gate structure for a MOSFET device wherein the etch rate selectivity of the conductive gate material to an underlying insulator layer is optimized, has been developed. After formation of a nitrided silicon dioxide layer, to be used as for the MOSFET gate insulator layer, a high temperature hydrogen anneal procedure is performed. The high temperature anneal procedure replaces nitrogen components in a top portion of the nitrided silicon dioxide gate insulator layer with hydrogen components. The etch rate of the hydrogen annealed layer in specific dry etch ambients is now decreased when compared to the non-hydrogen annealed nitrided silicon dioxide counterpart. Thus the etch rate selectivity of conductive gate material to underlying gate insulator material is increased when employing the slower etching hydrogen annealed nitrided silicon dioxide layer.
Abstract:
The present disclosure provides a method is provided for fabricating a metal oxide semiconductor (MOS) gate stack on a semiconductor substrate. The method includes generating moisture on a surface of the semiconductor substrate to form an oxide layer less than 10 nanometers thin and performing a nitridation process on the thin oxide layer. After the nitridation process, the method includes performing a polysilicon deposition process on the surface of the semiconductor substrate, doping the polysilicon deposition to a level of 5×1015 at/cm3, and cleaning the doped polysilicon with a light ammonia solution.
Abstract translation:本公开提供了一种用于在半导体衬底上制造金属氧化物半导体(MOS)栅极堆叠的方法。 该方法包括在半导体衬底的表面上产生湿气以形成小于10纳米薄的氧化物层,并对薄氧化物层进行氮化处理。 在氮化处理之后,该方法包括在半导体衬底的表面上执行多晶硅沉积工艺,将多晶硅沉积掺杂至5×10 15 at / cm 3的水平,并用轻氨溶液清洗掺杂的多晶硅。
Abstract:
A stacked and integrated electric power generating device for capturing multiple light sources for power generation has a first concentrating photovoltaic module and a second concentrating photovoltaic module. The first concentrating photovoltaic module 10 has a transparent solar concentrating panel and a thin film solar cell. The second concentrating photovoltaic module is positioned below the first concentrating photovoltaic module with an interval, such that the first and second concentrating photovoltaic modules are in the form of a stacked and integrated structure, and the second concentrating photovoltaic module can absorb the light concentrated by the transparent solar concentrating panel to generate electric power.
Abstract:
A capacitor and methods for forming the same are provided. The method includes forming a bottom electrode; treating the bottom electrode in an oxygen-containing environment to convert a top layer of the bottom electrode into a buffer layer; forming an insulating layer on the buffer layer; and forming a top electrode over the insulating layer.
Abstract:
A steering wheel locking device includes a lock rod, a lock base, a locking device and a fixing unit. The lock rod has a chamber, two pairs of first holes longitudinally aligned, a lock hole and a saddle. The lock base comprises a lock core to be inserted into the lock base through the lock hole. The top of the lock core is provided with a latch. The locking device has a pair of second holes in register with the pairs of first holes of the lock rod, and is engageable with the latch and moveable transversely along the lock rod between a locked position and an unlocked position. The fixing unit comprises a pair of fixing rods in register with the pairs of first holes of the lock rod and the pair of second holes of the locking device. The fixing rods are moveable longitudinally through the pairs of first holes and the pair of second holes to lock or unlock the locking device.
Abstract:
A new and improved liner modification method for a liner oxide layer in an STI trench is disclosed. According to the method, an STI trench is etched in a substrate and a liner oxide layer is formed on the trench surfaces by oxidation techniques. The method further includes pre-treatment of the trench surfaces using a nitrogen-containing gas prior to formation of the liner oxide layer, post-formation nitridation of the liner oxide layer, or both pre-treatment of the trench surfaces and post-formation nitridation of the liner oxide layer. The liner modification method of the present invention optimizes the inverse narrow width effect (INWE) and gate oxide integrity (GOI) of STI structures and prevents diffusion of dopant into the liner oxide layer during subsequent processing.
Abstract:
A method of forming multiple gate oxide thicknesses on active areas that are separated by STI isolation regions on a substrate. A first layer of oxide is grown to a thickness of about 50 Angstroms and selected regions are then removed. A second layer of oxide is grown that is thinner than first growth oxide. For three different gate oxide thicknesses, selected second oxide growth regions are nitridated with a N2 plasma which increases the dielectric constant of a gate oxide and reduces the effective oxide thickness. To achieve four different gate oxide thicknesses, nitridation is performed on selected first growth oxides and on selected second growth oxide regions. Nitridation of gate oxides also prevents impurity dopants from migrating across the gate oxide layer and reduces leakage of standby current. The method also reduces corner loss of STI regions caused by HF etchant.