Abstract:
A semiconductor memory device having a CMOS memory cell with a floating gate and increasing concentration of dopant in the source, drain and channel regions. Typically the concentration profile is generally exponential across the channel width. The device has relatively high diffusion current densities accelerated toward the surface and directed toward the channel/drain interface. Gate oxidation thickness is reduced over the channel near the drain to create a tunnel "window" in the area of greatest electric field magnitude. The device provides for significantly reduced write times as compared to conventional devices.
Abstract:
Techniques for vaporizing and handling a vaporized metallic element or metallic element salt with a heated inert carrier gas for further processing. The vaporized metallic element or salt is carried by an inert carrier gas heated to the same temperature as the vaporizing temperature to a heated processing chamber. The metal or salt vapor may be ionized (and implanted) or deposited on substrates. Apparatus for accomplishing these techniques, which include carrier gas heating chambers and heated processing chambers are also provided.
Abstract:
A new relatively high-k gate dielectric gate material comprising calcium oxide will reduce leakage from the silicon substrate to the polysilicon gate, prevent boron penetration in p-channel devices, and reduce electron trapping in the dielectric. The surface of a silicon wafer is saturated with hydroxyl groups. A calcium halide, preferably calcium bromide, is heated to a temperature sufficient to achieve atomic layer deposition, and is transported to the silicon wafer. The calcium halide reacts with the hydroxyl groups. Water is added to carry away the resultant hydrogen halide. Gaseous calcium and water are then added to form a calcium oxide gate dielectric, until the desired thickness has been achieved. In an alternative embodiment of the method, the calcium halide is transported to the silicon wafer to react with the hydroxyl groups, followed by transport of gaseous water to the silicon wafer. These two steps are repeated until the desired thickness has been achieved.
Abstract:
The invention provides a process for forming a low k fluorine and carbon-containing silicon oxide dielectric material by reacting with an oxidizing agent one or more silanes that include one or more organofluoro silanes selected from: (a) an organofluoro silane containing two silicon atoms linked by one oxygen atom; (b) an organofluoro silane containing two silicon atoms linked by one or more carbon atoms, where the one or more carbon atoms each are bonded to one or more fluorine atoms, or to one or more organofluoro moieties, or to a combination thereof; and (c) an organofluoro silane containing a silicon atom bonded to an oxygen atom. The invention also provides a process for forming a low k fluorine and carbon-containing silicon oxide dielectric material by reacting with an oxidizing agent one or more silanes that include one or more organofluoro silanes characterized by the presence of Si—O bonds.
Abstract:
A method of forming a layer over a substrate is provided. Generally, a layer of a first reactive species is deposited over the substrate. The layer of the first reactive species is reacted with a second reactive species to create a first product. Unreacted reactive species is preferentially desorbed leaving a layer of the first product.
Abstract:
Reduction in the net charge at the interface of a dielectric and a semiconductor material is achieved by placing atomic species in the dielectric near the interface. Preferably, these species are selected from the group of alkaline earth metals. The presence of these atoms results in a redistribution of the electronic density near the interface. The placement of the atoms is effected by ion implantation followed by multiple annealing steps at alternating low and high temperatures.
Abstract:
A method of forming a supersaturated layer on a semiconductor device, where an initial phase layer is deposited on the semiconductor device. The initial phase layer has a solid phase dopant saturation level and a liquid phase dopant saturation level, where the liquid phase dopant saturation level is greater than the solid phase dopant saturation level. A concentration of a dopant is impregnated within the initial phase layers, where the concentration of the dopant is greater than the solid phase dopant saturation level and no more than about the liquid phase dopant saturation level. The initial phase layer is annealed, without appreciably heating the semiconductor device, using an amount of energy that is high enough to liquefy the initial phase layer over a melt duration. This dissolves the dopant in the liquefied initial phase layer. The amount of energy is low enough to not appreciably gasify or ablate the initial phase layer. The liquefied initial phase layer is cooled to freeze the dissolved dopant in a supersaturated, electrically activated concentration, thereby forming the supersaturated layer. An initial phase layer of either polysilicon or amorphous silicon may be deposited over a CMOS device. After laser annealing the initial phase layer with a melt duration of no more than about 100 nanoseconds, it is transformed into a doped polysilicon gate electrode that can be patterned and further processed.
Abstract:
A crystalline semiconductor gate electrode having a re-entrant geometry and a process for making same are disclosed. The novel gate electrode may be formed from a polysilicon layer on a substrate by first implanting a masked polysilicon layer with a neutral species, i.e., a species which will not introduce a dopant into the polysilicon, such as a Group IV element, e.g., silicon, or a Group VIII element, e.g., argon. The neutral species is implanted into the masked polysilicon layer at an angle to provide a tapered implanted region which undercuts one side of the length (long dimension) of the mask. The substrate may then be rotated 180.degree. and then again implanted to provide a tapered implanted region which undercuts the opposite side of the length of the mask. When gate electrodes with such re-entrant geometry are to be formed on a substrate with their long axes at right angles to one another, i.e., some lying along an X axis in the plane of the masked polysilicon layer on the substrate and others lying along a Y axis in the plane of the masked polysilicon layer on the substrate, the substrate may be rotated 90.degree., rather than 180.degree., between each implantation, and four implantations, rather than two, are performed. After the implantations, the implanted masked polysilicon layer is then subject to an etch, preferably an anisotropic etch, which will remove the unmasked implanted portions of the polysilicon layer, as well as the implanted regions beneath the mask, resulting in a gate electrode with re-entrant or tapered sidewalls, i.e., resembling an inverted trapezoid in cross-section.
Abstract:
Rapid Thermal Processing of a semiconductor wafer is performed by scanning a laser beam across a silicon dioxide film in contact with a surface of the wafer. The silicon dioxide film absorbs the energy from the laser beam and converts the energy to heat. The heat, in turn, is transferred to the wafer. Temperature feedback can be obtained to increase control and uniformity of temperatures across the wafer.
Abstract:
A process and resulting product is described for forming an oxide in a semiconductor substrate which comprises initially implanting the substrate with atoms of a noble gas, then oxidizing the implanted substrate at a reduced temperature, e.g., less than 900.degree. C., to form oxide in the implanted region of the substrate, and then etching the oxidized substrate to remove a portion of the oxide. The resulting oxidation produces a dual layer of oxide in the substrate. The upper layer is an extremely porous and frothy layer of oxide, while the lower layer is a more dense oxide. The upper porous layer of oxide can be selectively removed from the substrate by a mild etch, leaving the more dense oxide layer in the substrate. Further oxide can then be formed adjacent the dense layer of oxide in the substrate, either by oxide deposition over the dense oxide or by growing further oxide beneath the dense oxide layer. The initial oxide formed by the process appears to be temperature independent, at temperatures of 900.degree. C. or less, with oxide formation apparently dependent upon the extent of the implanted regions of the substrate, rather than upon temperature, resulting in thermal savings. Furthermore, the excess implanted noble gas in the substrate adjacent the oxide formed therein can have beneficial effects in inhibiting the formation of parasitic field transistors and in greater control over field thresholds.