Abstract:
A semiconductor device assembly and method can include a single semiconductor layer or stacked semiconductor layers, for example semiconductor wafers or wafer sections (semiconductor dice). On each semiconductor layer, a diamond layer formed therethrough can aid in the routing and dissipation of heat. The diamond layer can include a first portion on the back of the semiconductor layer, and one or more second portions which extend vertically into the semiconductor layer, for example completely through the semiconductor layer. Thermal contact can then be made to the diamond layer to conduct heat away from the one or more semiconductor layers. A conductive via can be formed through the diamond layers to provide signal routing and heat dissipation capabilities.
Abstract:
A voltage converter includes an output circuit having a high side device and a low side device which can be formed on a single die (i.e. a “PowerDie”) and connected to each other through a semiconductor substrate. Both the high side device and the low side device can include lateral diffused metal oxide semiconductor (LDMOS) transistors. Because both output transistors include the same type of transistors, the two devices can be formed simultaneously, thereby reducing the number of photomasks over other voltage converter designs. The voltage converter can further include a controller circuit on a different die which can be electrically coupled to, and co-packaged with, the PowerDie.
Abstract:
Various embodiments of the disclosure include the formation of enhancement-mode (e-mode) gate injection high electron mobility transistors (HEMT). Embodiments can include GaN, AlGaN, and InAlN based HEMTs. Embodiments also can include self-aligned P-type gate and field plate structures. The gates can be self-aligned to the source and drain, which can allow for precise control over the gate-source and gate-drain spacing. Additional embodiments include the addition of a GaN cap structure, an AlGaN buffer layer, AlN, recess etching, and/or using a thin oxidized AlN layer. In manufacturing the HEMTs according to present teachings, selective epitaxial growth (SEG) and epitaxial lateral overgrowth (ELO) can both be utilized to form gates.
Abstract:
Lateral DMOS devices having improved drain contact structures and methods for making the devices are disclosed. A semiconductor device comprises a semiconductor substrate; an epitaxial layer on top of the substrate; a drift region at a top surface of the epitaxial layer; a source region at a top surface of the epitaxial layer; a channel region between the source and drift regions; a gate positioned over a gate dielectric on top of the channel region; and a drain contact trench that electrically connects the drift layer and substrate. The contact trench includes a trench formed vertically from the drift region, through the epitaxial layer to the substrate and filled with an electrically conductive drain plug; electrically insulating spacers along sidewalls of the trench; and an electrically conductive drain strap on top of the drain contact trench that electrically connects the drain contact trench to the drift region.
Abstract:
A top-side cooled semiconductor package with stacked interconnection plate is disclosed. The semiconductor package includes a circuit substrate with terminal leads, a semiconductor die atop the circuit substrate, a low thermal resistance intimate interconnection plate for bonding and interconnecting a top contact area of the semiconductor die with the circuit substrate, a low thermal resistance stacked interconnection plate atop the intimate interconnection plate for top-side cooling, a molding encapsulant for encapsulating the package except for exposing a top surface of the stacked interconnection plate to maintain effective top-side cooling. The top portion of the stacked interconnection plate can include a peripheral overhang above the intimate interconnection plate. The peripheral overhang allows for a maximized exposed top surface area for heat dissipation independent of otherwise areal constraints applicable to the intimate interconnection plate. The stacked interconnection plate can be partially etched or three dimensionally formed to create the peripheral overhang.
Abstract:
This invention discloses a semiconductor power device disposed on a semiconductor substrate includes a plurality of deep trenches with an epitaxial layer filling said deep trenches and a simultaneously grown top epitaxial layer covering areas above a top surface of said deep trenches over the semiconductor substrate. A plurality of trench MOSFET cells disposed in said top epitaxial layer with the top epitaxial layer functioning as the body region and the semiconductor substrate acting as the drain region whereby a super-junction effect is achieved through charge balance between the epitaxial layer in the deep trenches and regions in the semiconductor substrate laterally adjacent to the deep trenches. Each of the trench MOSFET cells further includes a trench gate and a gate-shielding dopant region disposed below and substantially aligned with each of the trench gates for each of the trench MOSFET cells for shielding the trench gate during a voltage breakdown.
Abstract:
This invention discloses a semiconductor power device disposed in a semiconductor substrate and the semiconductor substrate has a plurality of deep trenches. The deep trenches are filled with an epitaxial layer thus forming a top epitaxial layer covering areas above a top surface of the deep trenches covering over the semiconductor substrate. The semiconductor power device further includes a plurality of transistor cells disposed in the top epitaxial layer whereby a device performance of the semiconductor power device is dependent on a depth of the deep trenches and not dependent on a thickness of the top epitaxial layer. Each of the plurality of transistor cells includes a trench DMOS transistor cell having a trench gate opened through the top epitaxial layer and filled with a gate dielectric material.
Abstract:
A copper bonding compatible bond pad structure and associated method is disclosed. The device bond pad structure includes a buffering structure formed of regions of interconnect metal and regions of non-conductive passivation material, the buffering structure providing buffering of underlying layers and structures of the device.
Abstract:
A semiconductor device includes a gate electrode, a top source region disposed next to the gate electrode, a drain region disposed below the bottom of the gate electrode, a oxide disposed on top of the source region and the gate electrode, and a doped polysilicon spacer disposed along a sidewall of the source region and a sidewall of the oxide. Methods for manufacturing such device are also disclosed.
Abstract:
A lead frame-based discrete power inductor is disclosed. The power inductor includes top and bottom lead frames, the leads of which form a coil around a single closed-loop magnetic core. The coil includes interconnections between inner and outer contact sections of the top and bottom lead frames, the magnetic core being sandwiched between the top and bottom lead frames. Ones of the leads of the top and bottom lead frames have a generally non-linear, stepped configuration such that the leads of the top lead frame couple adjacent leads of the bottom lead frame about the magnetic core to form the coil.