Abstract:
A method of forming an ultra-regular layout with unidirectional M1 metal line and the resulting device are disclosed. Embodiments include forming first and second vertical gate lines, spaced from and parallel to each other; forming a M1 metal line parallel to and between the first and second gate lines; forming first, second, and third M0 metal segments perpendicular to the M1 metal line; connecting the first M0 metal segment to the M1 metal line and the second gate line; connecting the second M0 metal segment to the first gate line and the second gate line; connecting the third M0 metal segment to the first gate line and the M1 metal line; forming a first gate cut on the first gate line between the second and third M0 metal segments; and forming a second gate cut on the second gate line between the first and second M0 segments.
Abstract:
A method involving identifying a pattern for an overall target cut mask to be used in patterning line-type features that includes a target non-rectangular opening feature having an inner, concave corner, decomposing the overall target cut mask pattern into first and second sub-target patterns, wherein the first sub-target pattern comprises a first rectangular-shaped opening feature corresponding to a first portion, but not all, of the target non-rectangular opening feature and the second sub-target pattern comprises a second rectangular-shaped opening feature corresponding to a second portion, but not all, of the target non-rectangular opening feature, the first and second openings overlapping adjacent the inner, concave corner, and generating first and second sets of mask data corresponding to the first and second sub-target patterns, wherein at least one of the first and second sets of mask data is generated based upon an identified contact-to-end-of-cut-line spacing rule.
Abstract:
A method for efficient off-track routing and the resulting device are disclosed. Embodiments include: providing a hardmask on a substrate; providing a plurality of first mandrels on the hardmask; providing a first spacer on each side of each of the first mandrels; providing a plurality of first non-mandrel regions of the substrate being separated from the first mandrels and between two of the first spacers, each of the first mandrels, first non-mandrel regions, and first spacers having a width equal to a distance; and providing a second mandrel having a width of at least twice the distance and being separated from one of the first non-mandrel regions by a second spacer.
Abstract:
One method disclosed herein involves, among other things, generating a set of mandrel mask rules, block mask rules and a virtual, software-based non-mandrel-metal mask. The method also includes creating a set of virtual non-mandrel mask rules that is a replica of the mandrel mask rules, generating a set of metal routing design rules based upon the mandrel mask rules, the block mask rules and the virtual non-mandrel mask rules, generating the circuit routing layout based upon the metal routing design rules, decomposing the circuit routing layout into a mandrel mask pattern and a block mask pattern, generating a first set of mask data corresponding to the mandrel mask pattern, and generating a second set of mask data corresponding to the block mask pattern.
Abstract:
Methods are provided for fabricating a semiconductor device. One method comprises providing a first pattern having a first polygon, the first polygon having a first tonality and having a first side and a second side, the first side adjacent to a second polygon having a second tonality, and the second side adjacent to a third polygon having the second tonality, and forming a second pattern by reversing the tonality of the first pattern. The method further comprises forming a third pattern from the second pattern by converting the second polygon from the first tonality to the second tonality forming a fourth pattern from the second pattern by converting the third polygon from the first tonality to the second tonality forming a fifth pattern by reversing the tonality of the third pattern, and forming a sixth pattern by reversing the tonality of the fourth pattern.
Abstract:
Methods of patterning metallization lines having variable widths in a metallization layer. A first mandrel layer is formed over a mask layer, with the mask layer overlying a second mandrel layer. The first mandrel layer is etched to form mandrel lines that have variable widths. The first non-mandrel trenches are etched in the mask layer, where the non-mandrel trenches have variable widths. The first mandrel lines are used to etch mandrel trenches in the mask layer, so that the mandrel lines and first non-mandrel lines define a mandrel pattern. The second mandrel layer is etched according to the mandrel pattern to form second mandrel lines, with the second mandrel lines having the variable widths of the plurality of first mandrel lines and the variable widths of the plurality of non-mandrel trenches.
Abstract:
At least one method, apparatus and system disclosed involves providing a functional cell for a circuit layout for an integrated circuit device. A determination as to a first location for a two-dimensional portion of a first power rail in a functional cell is made. A first portion of the first power rail is formed in a first direction. A second portion of the first power rail is formed in a second direction in the first location for the two-dimensional portion.
Abstract:
Self-aligned double patterning processes to produce metal route between and connecting conductive lines are disclosed. Embodiments include forming a hard mask over a dielectric layer; forming a patterning template including plural parallel linear elements on the hard mask, wherein said hard mask is exposed between adjacent parallel linear elements; forming a block mask covering a portion of said adjacent parallel linear elements and spaces therebetween; etching exposed portions of said hard mask through said block mask and said patterning template defining plural parallel lines; removing said block mask and said patterning template; forming a cut mask above said hard mask to define an opening perpendicular to and connecting two adjacent parallel lines; etching said hard mask through said cut mask and removing the cut mask; etching recesses in the dielectric layer through said hard mask; removing the hard mask; and filling said recesses with a conductive material.
Abstract:
At least one method, apparatus and system disclosed herein for processing a semiconductor wafer using a continuous active area design for manufacturing a finFET device. A first gate structure of a continuous active area design is formed in a first layer of the wafer. A first hard mask layer is deposited. A portion of the first hard mask layer is removed based upon a first trench silicide (TS) pattern and a second TS pattern. A full stripe first trench silicide (TS) structure and a second TS structure are formed. A first TS capping layer is deposited above the first TS structure and a second TS capping. The first TS capping layer is removed and a source/drain contact structure (CA) is formed above the first TS structure in a second layer of the semiconductor wafer. A gate contact structure (CB) is formed above the gate structure in the second layer.
Abstract:
At least one method, apparatus and system disclosed involves circuit layout for an integrated circuit device. A design for an integrated circuit device is received. The design comprises a functional cell. A first substitute functional cell for a first value of shift of a set of routing tracks respective to the boundary of the functional cell is provided. The first substitute functional cell comprises at least one pin moved by an amount of the first value. A determination is made as to whether an amount of shift of the set of routing tracks corresponds to the first value. The functional cell is replaced with the first substitute functional cell in response to a determination that the amount of shift of the set of routing tracks corresponds to the first value.