Abstract:
One method disclosed herein includes forming a stack of material layers to form gate structures, performing a first etching process to define an opening through the stack of materials that defines an end surface of the gate structures, forming a gate separation structure in the opening and performing a second etching process to define side surfaces of the gate structures. A device disclosed herein includes first and second active regions that include at least one fin, first and second gate structures, wherein each of the gate structures have end surfaces, and a gate separation structure positioned between the gate structures, wherein opposing surfaces of the gate separation structure abut the end surfaces of the gate structures, and wherein an upper surface of the gate separation structure is positioned above an upper surface of the at least one fin.
Abstract:
Methods of facilitating replacement gate processing and semiconductor devices formed from the methods are provided. The methods include, for instance, providing a plurality of sacrificial gate electrodes with sidewall spacers, the sacrificial gate electrodes with sidewall spacers being separated by, at least in part, a first dielectric material, wherein the first dielectric material is recessed below upper surfaces of the sacrificial gate electrodes, and the upper surfaces of the sacrificial gate electrodes are exposed and coplanar; conformally depositing a protective film over the sacrificial gate electrodes, the sidewall spacers, and the first dielectric material; providing a second dielectric material over the protective film, and planarizing the second dielectric material, stopping on and exposing the protective film over the sacrificial gate electrodes; and opening the protective film over the sacrificial gate electrodes to facilitate performing a replacement gate process.
Abstract:
A dielectric metal compound liner can be deposited on a semiconductor fin prior to formation of a disposable gate structure. The dielectric metal compound liner protects the semiconductor fin during the pattering of the disposable gate structure and a gate spacer. The dielectric metal compound liner can be removed prior to formation of source and drain regions and a replacement gate structure. Alternately, a dielectric metal compound liner can be deposited on a semiconductor fin and a gate stack, and can be removed after formation of a gate spacer. Further, a dielectric metal compound liner can be deposited on a semiconductor fin and a disposable gate structure, and can be removed after formation of a gate spacer and removal of the disposable gate structure. The dielectric metal compound liner can protect the semiconductor fin during formation of the gate spacer in each embodiment.
Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided. In an exemplary embodiment, a method for fabricating integrated circuits includes providing a sacrificial gate structure over a semiconductor substrate. The sacrificial gate structure includes two spacers and sacrificial gate material between the two spacers. The method recesses a portion of the sacrificial gate material between the two spacers. Upper regions of the two spacers are etched while using the sacrificial gate material as a mask. The method includes removing a remaining portion of the sacrificial gate material and exposing lower regions of the two spacers. A first metal is deposited between the lower regions of the two spacers. A second metal is deposited between the upper regions of the two spacers.
Abstract:
One method disclosed herein includes removing a sacrificial gate structure and forming a replacement gate structure in its place, after forming the replacement gate structure, forming a metal silicide layer on an entire upper surface area of each of a plurality of source/drain regions and, with the replacement gate structure in position, forming at least one source/drain contact structure for each of the plurality of source/drain regions, wherein the at least one source/drain contact structure is conductively coupled to a portion of the metal silicide layer and a dimension of the at least one source/drain contact structure in a gate width direction of the transistor is less than a dimension of the source/drain region in the gate width direction.
Abstract:
An improved finFET and method of fabrication using a silicon-on-nothing process flow is disclosed. Nitride spacers protect the fin sides during formation of cavities underneath the fins for the silicon-on-nothing (SON) process. A flowable oxide fills the cavities to form an insulating dielectric layer under the fins.
Abstract:
An integrated circuit structure with a selectively formed and at least partially oxidized metal cap over a gate. In one embodiment, an integrated circuit structure has: a substrate; a metal gate located over the substrate; at least one liner layer over the substrate and substantially surrounding the metal gate; and an at least partially oxidized etch stop layer located directly over the metal gate, the etch stop layer including at least one of cobalt (Co), manganese (Mn), tungsten (W), iridium (Ir), rhodium (Rh) or ruthenium (Ru).
Abstract:
A substrate including a handle substrate, a lower insulator layer, a buried semiconductor layer, an upper insulator layer, and a top semiconductor layer is provided. Semiconductor fins can be formed by patterning a portion of the buried semiconductor layer after removal of the upper insulator layer and the top semiconductor layer in a fin region, while a planar device region is protected by an etch mask. A disposable fill material portion is formed in the fin region, and a shallow trench isolation structure can be formed in the planar device region. The disposable fill material portion is removed, and gate stacks for a planar field effect transistor and a fin field effect transistor can be simultaneously formed. Alternately, disposable gate structures and a planarization dielectric layer can be formed, and replacement gate stacks can be subsequently formed.
Abstract:
A transistor device includes first and second spaced-apart active regions positioned in a semiconductor substrate, each of the respective first and second spaced-apart active regions having at least one fin. First and second spaced-apart gate structures are positioned above the respective first and second active regions, each of the first and second gate structures having end surfaces. A gate separation structure is positioned between the first and second spaced-apart gate structures, wherein first and second opposing surfaces of the gate separation structure abut an entirety of the respective end surfaces of the first and second spaced-apart gate structures, and wherein an upper surface of the gate separation structure is positioned at a greater height level above the semiconductor substrate than an upper surface of the at least one fin of each of the respective first and second spaced-apart active regions.
Abstract:
One method disclosed herein includes forming a stack of material layers to form gate structures, performing a first etching process to define an opening through the stack of materials that defines an end surface of the gate structures, forming a gate separation structure in the opening and performing a second etching process to define side surfaces of the gate structures. A device disclosed herein includes first and second active regions that include at least one fin, first and second gate structures, wherein each of the gate structures have end surfaces, and a gate separation structure positioned between the gate structures, wherein opposing surfaces of the gate separation structure abut the end surfaces of the gate structures, and wherein an upper surface of the gate separation structure is positioned above an upper surface of the at least one fin.