Abstract:
The present disclosure generally relates to semiconductor structures and, more particularly, to overlay mark structures and methods of manufacture. The method includes: forming an overlay mark within a layer of a stack of layers; increasing a density of an upper layer of the stack of layers, above the layer, the increased density protecting the overlay mark; and polishing the upper layer or one or more layers above the upper layer of the stack of layers.
Abstract:
The present disclosure generally relates to semiconductor structures and, more particularly, to via and skip via structures and methods of manufacture. The method includes: forming a plurality of openings in a hardmask material; blocking at least one of the plurality of openings of the hardmask material with a blocking material; etching a skip via to a metallization feature in a stack of metallization features through another of the plurality of openings which is not blocked by the blocking material; and at least partially filling the skip via by a bottom up fill process.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to post spacer self-aligned cut structures and methods of manufacture. The method includes: providing a non-mandrel cut; providing a mandrel cut; forming blocking material on underlying conductive material in the non-mandrel cut and the mandrel cut; forming trenches with the blocking material acting as a blocking mask at the mandrel cut and the non-mandrel cut; and filling the trenches with metallization features such that the metallization features have a tip to tip alignment.
Abstract:
One aspect of the disclosure is directed to a method of forming an integrated circuit structure. The method may include: providing a set of fins over a semiconductor substrate, the set of fins including a plurality of working fins and a plurality of dummy fins, the plurality of dummy fins including a first subset of dummy fins within a pre-defined distance from any of the plurality of working fins, and a second subset of dummy fins beyond the pre-defined distance from any of the plurality of working fins; removing the first subset of dummy fins by an extreme ultraviolet (EUV) lithography technique; and removing at least a portion of the second subset of dummy fins.
Abstract:
Interconnect structures and methods of fabricating an interconnect structure. A first section of a mandrel is covered with a feature of an etch mask. A top surface of a second section of the mandrel is exposed by the feature of the etch mask and is recessed with an etching process. A conductive via is formed that reproduces a shape of the first section of the mandrel, and a conductive line is formed that reproduces a shape of the second section of the mandrel. The mandrel is removed to release the conductive via and the conductive line.
Abstract:
A method of fabricating raised fin structures is provided, the fabricating including: providing a substrate and at least one dielectric layer over the substrate; forming a trench in the at least one dielectric layer, the trench having a lower portion, a lateral portion, and an upper portion, the upper portion being at least partially laterally offset from the lower portion and being joined to the lower portion by the lateral portion; and, growing a material in the trench to form the raised fin structure, wherein the trench is formed to ensure that any growth defect in the lower portion of the trench terminates either in the lower portion or the lateral portion of the trench and does not extend into the upper portion of the trench.
Abstract:
A method includes, for example, providing an intermediate semiconductor structure comprising a metallic layer, a patternable layer disposed over the metallic layer, and a hard mask disposed over the patternable layer, the intermediate semiconductor structure comprising a plurality of vias extending through the hard mask onto the metallic layer, depositing a sacrificial barrier layer over the intermediate semiconductor structure and in the plurality of vias, removing a portion of the sacrificial barrier layer between the plurality of vias while maintaining a portion of the sacrificial barrier layer in the plurality of vias, forming a trench in the patternable layer between the removed portion of the sacrificial barrier layer and the plurality of vias, and removing the remaining portions of the sacrificial barrier layer from the plurality of vias.
Abstract:
Integrated circuit (IC) structure embodiments and methods of forming them with middle of the line (MOL) contacts that incorporate a protective cap, which provides protection from damage during back end of the line (BEOL) processing. Each MOL contact has a main body in a lower portion of a contact opening. The main body has a liner (e.g., a titanium nitride layer) that lines the lower portion and a metal layer on the liner. The MOL contact also has a protective cap in an upper portion of the contact opening above the first metal layer and extending laterally over the liner to the sidewalls of the contact opening. The protective cap has an optional liner, which is different from the liner in the lower portion, and a metal layer, which is either the same or different than the metal in the main body.
Abstract:
One illustrative method disclosed herein includes, among other things, forming an opening in at least one layer of insulating material so as to thereby expose at least a portion of a conductive contact, performing a selective metal silicide formation process to selectively form a metal silicide layer in the opening and on the conductive contact, depositing at least one conductive material above the selectively formed metal silicide layer so as to over-fill the opening, and performing at least one planarization process so as to remove excess materials and thereby define a conductive via that is positioned in the opening and conductively coupled to the selectively formed metal silicide layer and to the conductive contact.
Abstract:
Methods for fabricating integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes selectively depositing a metal layer overlying a metal line of a metallization layer that is disposed in an ILD layer of dielectric material while an upper surface of the ILD layer that is laterally adjacent to the metal line is exposed. A hard mask layer is formed overlying the upper surface of the ILD layer laterally adjacent to the metal layer. The metal layer is removed to expose the metal line while leaving the hard mask layer intact. An interconnect is formed with the metal line adjacent to the hard mask layer.