摘要:
A crystallization method includes wavefront-dividing an incident light beam into a plurality of light beams, condensing the wavefront-divided light beams in a corresponding phase shift portion of a phase shift mask or in the vicinity of the phase shift portion to form a light beam having an light intensity distribution of an inverse peak pattern in which a light intensity is minimum in a point corresponding to the phase shift portion of the phase shift mask, and irradiating a polycrystalline semiconductor film or an amorphous semiconductor film with the light beam having the light intensity distribution to produce a crystallized semiconductor film.
摘要:
An object of the present invention is to reduce power consumption in a plasma display panel (PDP) by reducing the discharge firing voltage, while suppressing the occurrence of discharge variability when the PDP is driven, as well as ensuring the wall-charge holding performance of a protective film surface. To achieve this, a front panel of a PDP of the present invention has a catalyst layer dispersed on a surface of display electrodes formed in stripes on one side of a glass substrate, and needle crystals composed of graphite formed to stand upright on the catalyst layer. The needle crystals form a phase-separated structure with the materials of a dielectric film and a protective film.
摘要:
A crystallization apparatus includes an illumination system which illuminates a phase-shift mask and an image-forming optical system arranged in an optical path between the phase-shift mask and a semiconductor film. The semiconductor film is irradiated with a light beam having a light intensity distribution of inverted peak patterns whose light intensity is the lowest in portions corresponding to phase shift sections to form a crystallized semiconductor film. The image-forming optical system is located to optically conjugate the phase-shift mask and the semiconductor film and has an aberration corresponding to the given wavelength range to form a light intensity distribution of inverted peak patterns with no swell of intensity in the middle portion.
摘要:
A crystallization apparatus includes an illumination system which applies illumination light for crystallization to a non-single-crystal semiconductor film, and a phase shifter which includes first and second regions disposed to form a straight boundary and transmitting the illumination light from the illumination system by a first phase retardation therebetween, and phase-modulates the illumination light to provide a light intensity distribution having an inverse peak pattern that light intensity falls in a zone of the non-single-crystal semiconductor film containing an axis corresponding to the boundary. The phase shifter further includes a small region which extends into at least one of the first and second regions from the boundary and transmits the illumination light by a second phase retardation with respect to the at least one of the first and second regions.
摘要:
A thin film transistor includes a one conductive type semiconductor layer; a source region and a drain region which are separately provided in the semiconductor layer; and a gate electrode provided above or below the semiconductor layer with an insulating film interposed therebetween, wherein the width of the junction face between the source region and the channel which is provided between the source region and drain region, is different from the width of the junction face between the above channel region and the drain region.
摘要:
A crystallization method includes wavefront-dividing an incident light beam into a plurality of light beams, condensing the wavefront-divided light beams in a corresponding phase shift portion of a phase shift mask or in the vicinity of the phase shift portion to form a light beam having an light intensity distribution of an inverse peak pattern in which a light intensity is minimum in a point corresponding to the phase shift portion of the phase shift mask, and irradiating a polycrystalline semiconductor film or an amorphous semiconductor film with the light beam having the light intensity distribution to produce a crystallized semiconductor film.
摘要:
The present invention is directed to a crystallization apparatus including an illumination system to illuminate a phase shift mask, which converts a light beam from the illumination system into a light beam that has a light intensity distribution of an inverse peak pattern having a minimum intensity in an area corresponding to a phase shift portion of the phase shift mask. The crystallization apparatus further includes an optical member to form on a predetermined plane a light intensity distribution of a concave pattern, which has a light intensity that is minimum in an area corresponding to the phase shift portion and increases toward the circumference of that area based on the light from the illumination system, and an image-forming optical system to set a surface of the polycrystalline semiconductor film or the amorphous semiconductor film or its conjugate plane and the predetermined plane to an optical conjugate relationship.
摘要:
Methods for forming a single crystal semiconductor thin film layer from a non-single crystal layer includes directing a light source having a homogenized intensity distribution and a modulated amplitude towards the non-single crystal layer, and relatively moving the light with respect to the layer wherein the amplitude of the conditioned light is preferably increased in the direction of relative motion of the light to the layer. Preferred methods also include multiple light exposures in overlapping series to form ribbon-shaped single crystal regions, and providing a low temperature point in the semiconductor layer to generate a starting location for single crystalization.
摘要:
A solar cell utilizing a chalcopyrite semiconductor and reducing the density of defects on the junction interface of pn junctions is provided. This solar cell includes a substrate, a back electrode formed on the substrate, a p-type chalcopyrite semiconductor thin film formed on the back electrode, an n-type semiconductor thin film formed so as to constitute a pn junction with the p-type chalcopyrite semiconductor thin film, and a transparent electrode formed on the n-type semiconductor thin film. A material having a higher resistivity than the p-type chalcopyrite semiconductor is formed between the p-type chalcopyrite semiconductor thin film and the n-type semiconductor thin film. A thin film made of this material may be formed by deposition from a solution. For example, CuInS.sub.2 is formed on the surface of a p-type chalcopyrite based semiconductor such as CuInSe.sub.2 by contacting the surface of the semiconductor with a solution in which a salt containing group IIIb elements, an organic substance containing group VIb elements and acid are mixed.
摘要:
A precursor for manufacturing a semiconductor thin film in which an oxide thin film comprising at least one element as a dopant, selected from a group which consists of Groups IA, IIA, IIB, VA, and VB elements, and Groups IB and IIIA elements which are main components of the semiconductor thin film are deposited on a substrate, or a precursor for manufacturing a semiconductor thin film which is formed by depositing a thin film of oxide comprising the Groups IB and IIIA elements on the substrate wherein the content of at least one of the Groups IB and IIIA elements is varied in the direction of film thickness, and a method for manufacturing a semiconductor thin film comprising the step of heat treating the precursor for manufacturing the semiconductor thin film in an atmosphere containing a Group VIA element. The present invention provides a precursor for manufacturing a semiconductor thin film and a method for manufacturing the semiconductor thin film using the precursor which are suitable for manufacturing a semiconductor thin film having a chalcopyrite structure that has a high and uniform energy conversion efficiency when the semiconductor thin film is used as a photoabsorptive layer of a solar cell.