Abstract:
A protective structure may include: a semiconductor substrate having a doping of a first conductivity type; a semiconductor layer having a doping of a second conductivity type arranged at a surface of the semiconductor substrate; a buried layer having a doping of the second conductivity type arranged in a first region of the semiconductor layer and at the junction between the semiconductor layer and the semiconductor substrate; a first dopant zone having a doping of the first conductivity type arranged in the first region of the semiconductor layer above the buried layer; a second dopant zone having a doping of the second conductivity type arranged in a second region of the semiconductor layer; an electrical insulation arranged between the first region and the second region of the semiconductor layer; and a common connection device for the first dopant zone and the second dopant zone.
Abstract:
An overvoltage protection device includes a semiconductor body including a substrate region disposed beneath an upper surface of the semiconductor body, first and second contact pads disposed over the upper surface of the semiconductor body, a trenched connector formed in the semiconductor body, a vertical voltage blocking device formed in the semiconductor body, wherein the trenched connector includes a trench that is formed in the upper surface of the semiconductor body and extends to the substrate region, and a metal electrode disposed within the trench, wherein the metal electrode forms an electrically conductive connection between the first contact pad and the substrate region, and wherein the voltage blocking device is connected between the second contact pad and the substrate region.
Abstract:
An ESD protection device may include: a first vertically integrated ESD protection structure comprising a first semiconductor portion, a first contact region disposed on a first side of the first semiconductor portion and a first terminal exposed on a second side of the first semiconductor portion opposite the first side of the first semiconductor portion, a second vertically integrated ESD protection structure comprising a second semiconductor portion, a second contact region disposed on a first side of the second semiconductor portion and a second terminal exposed on a second side of the second semiconductor portion opposite the first side of the second semiconductor portion, an electrical connection layer, wherein the first vertically integrated ESD protection structure and the second vertically integrated ESD protection structure are disposed on the electrical connection layer laterally separated from each other and are electrically connected with each other anti-serially via the electrical connection layer.
Abstract:
A method of forming a semiconductor device includes forming a first vertical protection device comprising a thyristor in a substrate, forming a first lateral trigger element for triggering the first vertical protection device in the substrate, and forming an electrical path in the substrate to electrically couple the first lateral trigger element with the first vertical protection device.
Abstract:
A semiconductor device includes a vertical protection device having a thyristor and a lateral trigger element disposed in a substrate. The lateral trigger element is for triggering the vertical protection device.
Abstract:
In one embodiment of the present invention, an electronic device includes a first emitter/collector region and a second emitter/collector region disposed in a substrate. The first emitter/collector region has a first edge/tip, and the second emitter/collector region has a second edge/tip. A gap separates the first edge/tip from the second edge/tip. The first emitter/collector region, the second emitter/collector region, and the gap form a field emission device.
Abstract:
In accordance with an embodiment of the present invention, a method for forming a semiconductor device includes forming a device region in a substrate. The device region extends continuously from one sidewall of the substrate to an opposite sidewall of the substrate. The method further includes forming trenches in the substrate. The trenches divide the device region into active regions. The method also includes singulating the substrate by separating the substrate along the trenches.
Abstract:
A vertically integrated semiconductor device in accordance with various embodiments may include: a first semiconducting layer; a second semiconducting layer disposed over the first semiconducting layer; a third semiconducting layer disposed over the second semiconducting layer; and an electrical bypass coupled between the first semiconducting layer and the second semiconducting layer.
Abstract:
In accordance with an embodiment of the present invention, a method for forming a semiconductor device includes forming a device region in a substrate. The device region extends continuously from one sidewall of the substrate to an opposite sidewall of the substrate. The method further includes forming trenches in the substrate. The trenches divide the device region into active regions. The method also includes singulating the substrate by separating the substrate along the trenches.
Abstract:
A method for producing a protective structure may include: providing a semiconductor base substrate with a doping of a first conductivity type; producing a first epitaxial layer on the substrate; implanting a dopant of a second conductivity type in a delimited implantation region of the first epitaxial layer; applying a second epitaxial layer with a doping of the second conductivity type on the first epitaxial layer; forming an insulation zone in the second epitaxial layer, such that the second epitaxial layer is subdivided into first and second regions; producing a first dopant zone with a doping of the first conductivity type in the first region above the implantation region; producing a second dopant zone with a doping of the second conductivity type in the second region; outdiffusing the dopant from the implantation region to form a buried layer at the junction between the first epitaxial layer and the first region.