Abstract:
Embodiments of the invention generally include a method of forming a nonvolatile memory device that contains a resistive switching memory element that has an improved device switching performance and lifetime, due to the addition of a current limiting component disposed therein. In one embodiment, the current limiting component comprises at least one layer of resistive material that is configured to improve the switching performance and lifetime of the formed resistive switching memory element. The electrical properties of the formed current limiting layer, or resistive layer, are configured to lower the current flow through the variable resistance layer during the logic state programming steps (i.e., “set” and “reset” steps) by adding a fixed series resistance in the formed resistive switching memory element found in the nonvolatile memory device. Typically, resistive switching memory elements may be formed as part of a high-capacity nonvolatile memory integrated circuit, which can be used in various electronic devices, such as digital cameras, mobile telephones, handheld computers, and music players.
Abstract:
Embodiments of the invention generally relate to a resistive switching nonvolatile memory device having an interface layer structure disposed between at least one of the electrodes and a variable resistance layer formed in the nonvolatile memory device, and a method of forming the same. Typically, resistive switching memory elements may be formed as part of a high-capacity nonvolatile memory integrated circuit, which can be used in various electronic devices, such as digital cameras, mobile telephones, handheld computers, and music players. In one configuration of the resistive switching nonvolatile memory device, the interface layer structure comprises a passivation region, an interface coupling region, and/or a variable resistance layer interface region that are configured to adjust the nonvolatile memory device's performance, such as lowering the formed device's switching currents and reducing the device's forming voltage, and reducing the performance variation from one formed device to another.
Abstract:
Provided are resistive random access memory (ReRAM) cells, each having three or more resistive states and being capable of storing multiple bits of data, as well as methods of fabricating and operating such ReRAM cells. Such ReRAM cells or, more specifically, their resistive switching layer have wide range of resistive states and are capable of being very conductive (e.g., about 1 kOhm) in one state and very resistive (e.g., about 1 MOhm) in another state. In some embodiments, a resistance ratio between resistive states may be between 10 and 1,000 even up to 10,000. The resistive switching layers also allow establishing stable and distinct intermediate resistive states that may be assigned different data values. These layers may be configured to switching between their resistive states using fewer programming pulses than conventional systems by using specific materials, switching pluses, and resistive state threshold.
Abstract:
A hafnium oxide-aluminum oxide-hafnium oxide (HAH) based multilayer stack is used as the dielectric material in the formation of decoupling capacitors employed in microelectronic logic circuits. In some embodiments, the thickness of the aluminum oxide layer in the HAH multilayer stack varies between 0.1 nm and 1 nm. In some embodiments, the thickness of the two hafnium oxide layers varies between about 3.0 nm and 4.5 nm.
Abstract:
Embodiments of the invention generally include a method of forming a nonvolatile memory device that contains a resistive switching memory element that has an improved device switching performance and lifetime, due to the addition of a current limiting component disposed therein. In one embodiment, the current limiting component comprises at least one layer of resistive material that is configured to improve the switching performance and lifetime of the formed resistive switching memory element. The electrical properties of the formed current limiting layer, or resistive layer, are configured to lower the current flow through the variable resistance layer during the logic state programming steps (i.e., “set” and “reset” steps) by adding a fixed series resistance in the formed resistive switching memory element found in the nonvolatile memory device. Typically, resistive switching memory elements may be formed as part of a high-capacity nonvolatile memory integrated circuit, which can be used in various electronic devices, such as digital cameras, mobile telephones, handheld computers, and music players.
Abstract:
A resistor structure incorporated into a resistive switching memory cell with improved performance and lifetime is provided. The resistor structure may be a two-terminal structure designed to reduce the maximum current flowing through a memory cell. A method is also provided for making such a memory cell. The method includes depositing a resistor structure and depositing a variable resistance layer of a resistive switching memory cell of the memory cell, where the resistor structure is disposed in series with the variable resistance layer to limit the switching current of the memory cell. The incorporation of the resistor structure is very useful in obtaining desirable levels of switching currents that meet the switching specification of various types of memory cells. The memory cells may be formed as part of a high-capacity nonvolatile memory integrated circuit, which can be used in various electronic devices.
Abstract:
A method for forming a capacitor stack includes forming a first bottom electrode layer including a conductive metal nitride material. A second bottom electrode layer is formed above the first bottom electrode layer. The second bottom electrode layer includes a conductive metal oxide material, wherein the crystal structure of the conductive metal oxide material promotes a desired high-k crystal phase of a subsequently deposited dielectric layer. A dielectric layer is formed above the second bottom electrode layer. Optionally, an oxygen-rich metal oxide layer is formed above the dielectric layer. Optionally, a third top electrode layer is formed above the oxygen-rich metal oxide layer. The third top electrode layer includes a conductive metal oxide material. A fourth top electrode layer is formed above the third top electrode layer. The fourth top electrode layer includes a conductive metal nitride material.
Abstract:
Embodiments of the invention generally relate to nonvolatile memory devices and methods for manufacturing such memory devices. The methods for forming improved memory devices, such as a ReRAM cells, provide optimized, atomic layer deposition (ALD) processes for forming a metal oxide film stack which contains at least one hard metal oxide film (e.g., metal is completely oxidized or substantially oxidized) and at least one soft metal oxide film (e.g., metal is less oxidized than hard metal oxide). The soft metal oxide film is less electrically resistive than the hard metal oxide film since the soft metal oxide film is less oxidized or more metallic than the hard metal oxide film. In one example, the hard metal oxide film is formed by an ALD process utilizing ozone as the oxidizing agent while the soft metal oxide film is formed by another ALD process utilizing water vapor as the oxidizing agent.
Abstract:
This disclosure provides (a) methods of making an oxide layer (e.g., a dielectric layer) based on yttrium and titanium, to have a high dielectric constant and low leakage characteristic and (b) related devices and structures. An oxide layer having both yttrium and titanium may be fabricated either as an amorphous oxide or as an alternating series of monolayers. In several embodiments, the oxide is characterized by a yttrium contribution to total metal that is specifically controlled. The oxide layer can be produced as the result of a reactive process, if desired, via either a PVD process or, alternatively, via an atomic layer deposition process that employs specific precursor materials to allow for a common process temperature window for both titanium and yttrium reactions.
Abstract:
Provided are ReRAM cells, each having at least one interface between an electrode and a resistive switching layers with a maximum field value of less than 0.25. The electrode materials forming such interfaces include tantalum nitrides doped with lanthanum, aluminum, erbium yttrium, or terbium (e.g., TaX(Dopant)YN, where X is at least about 0.95). The electrode materials have low work functions (e.g., less than about 4.5 eV). At the same time, the resistive switching materials have high relative dielectric permittivities (e.g., greater than about 30) and high electron affinities (greater than about for 3.5 eV). Niobium oxide is one example of a suitable resistive switching material. Another electrode interfacing the resistive switching layer may have different characteristics and, in some embodiments, may be an inert electrode.