摘要:
A method is disclosed for recognition of high-dimensional data in the presence of occlusion, including: receiving a target data that includes an occlusion and is of an unknown class, wherein the target data includes a known object; sampling a plurality of training data files comprising a plurality of distinct classes of the same object as that of the target data; and identifying the class of the target data through linear superposition of the sampled training data files using l1 minimization, wherein a linear superposition with a sparsest number of coefficients is used to identify the class of the target data.
摘要:
Electronic devices and methods for forming electronic devices that allow for a reduction in device dimensions while also maintaining or reducing leakage current for non-volatile memory devices are provided. In one embodiment, a method of fabricating a non-volatile memory device is provided. The method comprises depositing a floating gate polysilicon layer on a substrate, forming a silicon oxide layer on the floating gate polysilicon layer, depositing a first silicon oxynitride layer on the silicon oxide layer, depositing a high-k dielectric material layer on the first silicon oxynitride layer, depositing a second silicon oxynitride on the high-k dielectric material, and forming a control gate polysilicon layer on the second silicon oxynitride layer. In one embodiment, the high-k dielectric material layer comprises hafnium silicon oxynitride.
摘要:
Methods for fabricating a semiconductor FIN structure with smooth sidewalls and rounded top corners and edges is disclosed. A method includes forming a plurality of semiconductor FIN structures. A sacrificial oxide layer is formed on the top surface and the sidewall surfaces of the plurality of semiconductor FIN structures for rounding the corners and edges between the top surfaces and the sidewall surfaces of the plurality of semiconductor FIN structures. The sacrificial oxide layer is removed with a high selectivity oxide etchant. The plurality of semiconductor FIN structures are annealed in a hydrogen environment. A tunnel oxide is formed over the plurality of semiconductor FIN structures.
摘要:
Charge storage stacks containing hetero-structure variable silicon richness nitride for memory cells and methods for making the charge storage stacks are provided. The charge storage stack can contain a first insulating layer on a semiconductor substrate; n charge storage layers comprising silicon-rich silicon nitride on the first insulating layer, wherein numbers of the charge storage layers increase from the bottom to the top and a k-value of an n-1th charge storage layer is higher than a k-value of an nth charge storage layer; n-1 dielectric layers comprising substantially stoichiometric silicon nitride between each of the n charge storage layers; and a second insulating layer on the nth charge storage layers.
摘要:
Post-laser annealing dopant deactivation is minimized by performing certain silicide formation process steps prior to laser annealing. A base metal layer of nickel is deposited on the source-drain regions and the gate electrode, followed by deposition of an overlying layer of a metal having a higher melting temperature than nickel. Thereafter, a rapid thermal process is performed to heat the substrate sufficiently to form metal silicide contacts at the top surfaces of the source-drain regions and of the gate electrode. The method further includes removing the remainder of the metal-containing layer and then depositing an optical absorber layer over the substrate prior to laser annealing.
摘要:
The present invention provides a semiconductor device capable of substantially retarding boron penetration within the semiconductor device and a method of manufacture therefor. In the present invention the semiconductor device includes a gate dielectric located over a substrate of a semiconductor wafer, wherein the gate dielectric includes a nitrided layer and a dielectric layer. The present invention further includes a nitrided transition region located between the dielectric layer and the nitrided layer and a gate located over the gate dielectric.
摘要:
In one embodiment, the invention generally provides a method for annealing a doped layer on a substrate including depositing a polycrystalline layer to a gate oxide layer and implanting the polycrystalline layer with a dopant to form a doped polycrystalline layer. The method further includes exposing the doped polycrystalline layer to a rapid thermal anneal to readily distribute the dopant throughout the polycrystalline layer. Subsequently, the method includes exposing the doped polycrystalline layer to a laser anneal to activate the dopant in an upper portion of the polycrystalline layer.
摘要:
In one embodiment, a method for forming a morphologically stable dielectric material is provided which includes exposing a substrate to a hafnium precursor, a silicon precursor and an oxidizing gas to form hafnium silicate material during a chemical vapor deposition (CVD) process and subsequently and optionally exposing the substrate to a post deposition anneal, a nitridation process and a thermal annealing process. In some examples, the hafnium and silicon precursors used during a metal-organic CVD (MOCVD) process are alkylamino compounds, such as tetrakis(diethylamino)hafnium (TDEAH) and tris(dimethylamino)silane (Tris-DMAS). In another embodiment, other metal precursors may be used to form a variety of metal silicates containing tantalum, titanium, aluminum, zirconium, lanthanum or combinations thereof.
摘要:
In one embodiment, the invention generally provides a method for annealing a doped layer on a substrate including depositing a polycrystalline layer to a gate oxide layer and implanting the polycrystalline layer with a dopant to form a doped polycrystalline layer. The method further includes exposing the doped polycrystalline layer to a rapid thermal anneal to readily distribute the dopant throughout the polycrystalline layer. Subsequently, the method includes exposing the doped polycrystalline layer to a laser anneal to activate the dopant in an upper portion of the polycrystalline layer.