摘要:
A method for low overhead system information acquisition (LOSIA) is disclosed. The LOSIA method includes several techniques for transmitting common channels in a next generation Radio Access Technology (xRAT). Instead of transmitting system information in a periodic, static, cell-specific, wideband manner, the transmission is triggered by user equipment in an “on demand” manner. The LOSIA method allows the network to control the overhead, bandwidth, and periodicity, as well as other characteristics. The LOSIA method employs several different techniques to trigger the information upon which the network can act, for example, by transmitting different payloads depending on the received trigger.
摘要:
A system and method for using carrier aggregation and enhanced inter-cell interference coordination in carrier scheduling is disclosed. The method comprises scheduling a communication of control channel information from at least one low power node on a physical downlink control channel (PDCCH) over at least one of a first low power component carrier and a second low power component carrier. A sub-frame having a lowest level of interference caused by a corresponding macro component carrier is identified at each corresponding subframe of the component carriers. The identified sub-frame is selected to transmit the control channel information on the PDCCH from the at least one low power node to a mobile wireless device.
摘要:
A user equipment device (UE) comprises physical layer circuitry configured to transmit and receive radio frequency electrical signals with one or more nodes of a radio access network; and processing circuitry. The processing circuitry is configured to receive system information via the network, wherein the system information indicates cell specific priority and frequency priority; identify candidate cells that have a cell specific priority that is higher than a cell priority of the current serving cell, have a frequency priority that is higher than a frequency priority of a current serving frequency, and satisfy a cell suitability criterion; and determine a candidate cell from the identified candidate cells to replace the current serving cell for communicating with the network.
摘要:
A technology that is operable to communicate buffer status report (BSR) information to an evolved node B (eNode B) is disclosed. In one embodiment, a user equipment is configured with circuitry configured to buffer data at the UE for communication to at least one of a master eNode B (MeNode B) or a secondary eNode B (SeNode B). BSR information is determined based on the buffered data at the UE. An uplink split configuration of the UE is determined for the MeNode B and the SeNode B. The MeNode B or the SeNode B is identified based on the uplink split configuration to send selected BSR information. The selected BSR information is communicated to the identified MeNode B or the selected SeNode B.
摘要:
Technology for reporting mobility information is disclosed. Mobility information can be identified for the UE when the UE is in idle mode, the mobility information including a visited cell history for the UE when the UE is in idle mode. An evolved node B (eNB) can be notified that the mobility information for the UE is available when the UE transitions from the idle mode to a connected mode. A request can be received from the eNB for the mobility information. The mobility information can be sent to the eNB using a reduced number of bits to represent the mobility information while substantially maintaining a level of accuracy of a mobility state estimation for the UE, wherein the mobility state estimation is performed at the eNB in order to determine an estimated speed of the UE.
摘要:
A system and method for multicast servicing in a unicast subframe is disclosed. The method using an evolved Node B (eNodeB) comprises the operation of setting up a multicast service on each of a plurality of user equipments (UEs) in a multicast group using a multicast identifier. The operation of allocating unicast data channel resources for the multicast group using unicast control channel information coded by the multicast identifier follows. The method using a UE comprises the operation of receiving a multicast identifier for a multicast group from an eNodeB, wherein the multicast identifier is shared among a plurality of UEs in the multicast group. The operation of receiving unicast control channel information coded by the multicast identifier from the eNodeB follows. The next operation of the method is extracting control channel information for allocating unicast data channel resources from the received unicast control channel information using the multicast identifier.
摘要:
Embodiments of user equipment (UE) and method for handover enhancement using reference signal received quality (RSRQ) in a wireless network are generally described herein. In some embodiments, a UE adaptively selects handover initiation parameters based, at least in part, on a velocity of the UE. The UE may determine an RSRQ of a serving cell and an RSRQ of a target cell and may transmit a measurement report to a serving eNB for handover from the serving cell to the target cell when the target cell RSRQ exceeds the serving cell RSRQ in accordance with the selected handover initiation parameters. In some of these embodiments, the handover initiation parameters may include an offset value, such as an A3offset value, and a time-to-trigger (TTT) that comprise an A3offset-TTT pair.
摘要:
Methods and apparatus are provided for transmitting control information in an SC-FDMA system. A UE generates a random cyclic shift value based on an SC-FDMA symbol index and a slot index. The UE cyclically shifts a sequence by the random cyclic shift value. The UE multiplies a control channel signal, including the control information, by the cyclically shifted sequence on an SC-FDMA symbol basis. The UE transmits the multiplied control channel signal in an SC-FDMA symbol to a Node B.
摘要:
A method and apparatus for transmitting and receiving control information in an SC-FDMA system are provided, in which different cyclic shift values are generated for different SC-FDMA symbols in one of a slot and a subframe, a sequence allocated for CDM of control information is cyclically shifted by the cyclic shift values, and a control channel signal including the control information is combined with the cyclically shifted sequences on an SC-FDMA symbol basis and transmitted in the SC-FDMA symbols.
摘要:
In some embodiments, a wireless device comprises a baseband processor, a control module coupled to the signal processor and comprising logic to map a first set and at least one redundant set of physical uplink control channel (PUCCH) blocks into a subframe structure, wherein the at least one redundant set of PUCCH blocks is embedded in an interior section of the subframe, an RF modulator/demodulator coupled to the baseband processor to modulate/demodulate the PUCCH blocks for communication within a predetermined frequency range, and a transmitter to transmit the PUCCH blocks. Other embodiments may be described.