摘要:
A low dielectric constant, thermally stable hydrogenated oxidized silicon carbon film which can be used as an interconnect dielectric in IC chips is disclosed. Also disclosed is a method for fabricating a thermally stable hydrogenated oxidized silicon carbon low dielectric constant film utilizing a plasma enhanced chemical vapor deposition technique. Electronic devices containing insulating layers of thermally stable hydrogenated oxidized silicon carbon low dielectric constant materials that are prepared by the method are further disclosed. To enable the fabrication of thermally stable hydrogenated oxidized silicon carbon low dielectric constant film, specific precursor materials having a ring structure are preferred.
摘要:
A method for treating a film of carbon-based dielectric material such as diamond-like carbon to remove volatiles is described. The method incorporates the steps of providing a non-oxidizing ambient and heating the film above 350.degree. C. Heating may be by rapid thermal annealing. The dielectric constant of the material may be lowered. A stabilized carbon-based material is provided with less than 0.5% thickness or weight change/hour at a selected temperature at or below 400.degree. C. The invention overcomes the problem of dimensional instability during the incorporation of the material in integrated circuit chips as an intra and inter level dielectric.
摘要:
A method for fabricating a thermally stable carbon-based low dielectric constant film such as a hydrogenated amorphous carbon film or a diamond-like carbon film in a parallel plate chemical vapor deposition process utilizing plasma enhanced chemical vapor deposition process is disclosed. Electronic devices containing insulating layers of thermally stable carbon-based low dielectric constant materials that are prepared by the method are further disclosed. In order to render the carbon-based low dielectric constant film thermally stable, i.e., at a temperature of at least 400.degree. C., the films are heat treated at a temperature of not less than 350.degree. C. for at least 0.5 hour. To enable the fabrication of thermally stable carbon-based low dielectric constant film, specific precursor materials such as cyclic hydrocarbons should be used, for instance, cyclohexane or benzene. The geometry of the chemical vapor deposition chamber is important in making the present invention thermally stable low dielectric constant films in order to achieve a specific bias voltage on the substrate onto which the electronic structure is formed.
摘要:
High quality factor (Q) spiral and toroidal inductor and transformer are disclosed that are compatible with silicon very large scale integration (VLSI) processing, consume a small IC area, and operate at high frequencies. The spiral inductor has a spiral metal coil deposited in a trench formed in a dielectric layer over a substrate. The metal coil is enclosed in ferromagnetic liner and cap layers, and is connected to an underpass contact through a metal filled via in the dielectric layer. The spiral inductor also includes ferromagnetic cores lines surrounded by the metal spiral coil. A spiral transformer is formed by vertically stacking two spiral inductors, or placing them side-by-side over a ferromagnetic bridge formed below the metal coils and cores lines. The toroidal inductor includes a toroidal metal coil with a core having ferromagnetic strips. The toroidal metal coil is segmented into two coils each having a pair of ports to form a toroidal transformer.
摘要:
A microelectromechanical system (MEMS) resonator or filter including a first conductive layer, one or more electrodes patterned in the first conductive layer which serve the function of signal input, signal output, or DC biasing, or some combination of these functions, an evacuated cavity, a resonating member comprised of a lower conductive layer and an upper structural layer, a first air gap between the resonating member and one or more of the electrodes, an upper membrane covering the cavity, and a second air gap between the resonating member and the upper membrane.
摘要:
A pillar structure that is contacted by a vertical contact is formed in an integrated circuit. A hard mask is formed and utilized to pattern a least a portion of the pillar structure. The hard mask comprises carbon. Subsequently, the hard mask is removed. A conductive material is then deposited in a region previously occupied by the hard mask to form the vertical contact. The hard mask may, for example, comprise diamond-like carbon. The pillar structure may have a width or diameter less than about 100 nanometers.
摘要:
A novel air-gap-containing interconnect wiring structure is described incorporating a solid low-k dielectric in the via levels, and a composite solid plus air-gap dielectric in the wiring levels. Also provided is a method for forming such an interconnect structure. The method is readily scalable to interconnect structures containing multiple wiring levels, and is compatible with Dual Damascene Back End of the Line (BEOL) processing.
摘要:
A low dielectric constant, thermally stable hydrogenated oxidized silicon carbon film which can be used as an interconnect dielectric in IC chips is disclosed. Also disclosed is a method for fabricating a thermally stable hydrogenated oxidized silicon carbon low dielectric constant film utilizing a plasma enhanced chemical vapor deposition technique. Electronic devices containing insulating layers of thermally stable hydrogenated oxidized silicon carbon low dielectric constant materials that are prepared by the method are further disclosed. To enable the fabrication of thermally stable hydrogenated oxidized silicon carbon low dielectric constant film, specific precursor materials having a ring structure are preferred.
摘要:
A method for providing regions of substantially lower fluorine content in a fluorine containing dielectric is described incorporating exposing a region to ultraviolet radiation and annealing at an elevated temperature to remove partially disrupted fluorine from the region. The invention overcomes the problem of fluorine from a fluorine containing dielectric reacting with other materials while maintaining a bulk dielectric material of sufficiently high or original fluorine content to maintain an effective low dielectric constant in semiconductor chip wiring interconnect structures.
摘要:
The present invention relates to lithographic methods for forming a dual relief pattern in a substrate, and the application of such methods to fabricating multilevel interconnect structures in semiconductor chips by a Dual Damascene process in which dual relief cavities formed in a dielectric are filled with conductive material to form the wiring and via levels. The invention comprises a twice patterned single mask layer Dual Damascene process modified by the addition of an easy-to-integrate sidewall liner to protect organic interlevel and intralevel dielectrics from potential damage induced by photoresist stripping steps during lithographic rework. The invention further comprises a method for forming a dual pattern hard mask which may be used to form dual relief cavities for use in Dual Damascene processing, said dual pattern hard mask comprising a first set of one or more layers with a first pattern, and a second set of one or more layers with a second pattern.