摘要:
A novel encoding system, compositions for use therein and methods for determining the source, location and/or identity of a particular item or component of interest is provided. In particular, the present invention utilizes a collection of one or more sizes of populations of semiconductor nanocrystals having characteristic spectral emissions, to “track” the source or location of an item of interest or to identify a particular item of interest. The semiconductor nanocrystals used in the inventive compositions can be selected to emit a desired wavelength to produce a characteristic spectral emission in narrow spectral widths, and with a symmetric, nearly Gaussian line shape, by changing the composition and size of the semiconductor nanocrystal. Additionally, the intensity of the emission at a particular characteristic wavelength can also be varied, thus enabling the use of binary or higher order encoding schemes.
摘要:
A method of separating a first fluid from a second fluid may include prewetting with the first fluid at least one channel defined by a separation device, the at least one channel thereby containing a column of the first fluid along its length. A combined flow of the first fluid and the second fluid may be presented to the separation device, so that the at least one channel is in fluid communication with the combined flow. Fluid pressure may be applied across the combined flow and the separation device, but the applied pressure should not exceed the capillary pressure in the at least one channel. Otherwise, the combined flow may be forced through the separation device. In this manner, the first fluid flows through the at least one channel, and the second fluid is excluded from the at least one channel, thereby separating at least a portion of the first fluid from the second fluid.
摘要:
Inventive systems and methods for the generation of energy using thermophotovoltaic cells are described. Also described are systems and methods for selectively emitting electromagnetic radiation from an emitter for use in thermophotovoltaic energy generation systems. In at least some of the inventive energy generation systems and methods, a voltage applied to the thermophotovoltaic cell (e.g., to enhance the power produced by the cell) can be adjusted to enhance system performance. Certain embodiments of the systems and methods described herein can be used to generate energy relatively efficiently.
摘要:
Systems and methods for crystallization in microfluidic systems are generally described. Many applications require the collection of time-resolved data to determine advantageous conditions for crystallization. The present invention provides tools and related techniques which address this need, as well as a platform for the growth of crystals within microfluidic channels. The systems and methods described herein provide, in one aspect, tools that allow for controlled, stable crystallization of organic materials in microfluidic channels. The invention can interface not only with microfluidic/microscale equipment, but with macroscale equipment to allow for the easy injection of fluids (e.g., fluids containing crystal precursor), extraction of crystals, determination of one or more crystal properties (e.g., crystal size, size distribution among multiple crystals, morphology, etc.), etc.
摘要:
The present invention generally relates to devices and methods for affecting the flow rate of fluid using pressure. The invention generally provides for controlled application of pressure to flowing fluids to control pressure and flow rates of those fluids, independent of location of the fluids relative to various devices. For example, in a series of devices, each connected to another via a conduit, pressure control units can be provided between devices to raise or lower pressure and/or flow rate of fluid flowing from one device to the next. In this way, a series of interconnected devices can be arranged such that inlet fluid pressure or flow rate of any individual device can be set independently of every other device.
摘要:
The present invention generally relates to the small-scale separation of a mixture of two or more components with different boiling points into enriched fractions. In some embodiments, a first and second fluid (e.g., a liquid and a gas, a liquid and a liquid, etc.) are passed through a channel. The first fluid may comprise at least two components, each with a unique boiling point. Upon contacting the first and second fluids within the channel, at least a portion of the most volatile of the components in the first fluid (i.e., the component with the lowest boiling point) may be transferred from the first fluid to the second fluid. In some instances, the transfer of the volatile component(s) from the first fluid to the second fluid may be expedited by heating, in some cases above the boiling point(s) of the component(s) to be transferred from the first fluid to the second fluid. Contact between the first and second fluids may be maintained, for example, via segmented flow, bubbling flow, etc. In some instances, separation between the first and second fluids may be maintained in a channel that is essentially free of interior microchannel surface irregularities.
摘要:
A method and apparatus for producing a jet or droplet of liquid. An injector device may include a reservoir in fluid communication with a nozzle, and a pressure gradient may be produced in the reservoir (e.g., by a piezoelectric element in an initial direction that is transverse to the emission direction of the jet or droplet) to produce a jet of liquid from the nozzle. The jet or droplet of liquid may be introduced through a cell membrane and into the cell interior in such a way that damage to the cell membrane that would cause cell death is avoided. An electrode may be formed adjacent a fluid channel by conducting a liquid material, such as solder, from a reservoir and into an electrode portion of an electrode channel to a location adjacent the fluid channel. A passageway between the electrode channel and the fluid channel may prevent flow of the liquid electrode material into the fluid channel during electrode formation.
摘要:
The present invention relates to gas separation membranes including a metal-based layer having sub-micron scale thicknesses. The metal-based layer can be a palladium alloy supported by ceramic layers such as a silicon oxide layer and a silicon nitride layer. By using MEMS, a series of perforations (holes) can be patterned to allow chemical components to access both sides of the metal-based layer. Heaters and temperature sensing devices can also be patterned on the membrane. The present invention also relates to a portable power generation system at a chemical microreactor comprising the gas separation membrane. The invention is also directed to a method for fabricating a gas separation membrane. Due to the ability to make chemical microreactors of very small sizes, a series of reactors can be used in combination on a silicon surface to produce an integrated gas membrane device.
摘要:
Systems and methods related to handling solids in microfluidic systems are generally described. Many of the systems and methods described herein address the need to inhibit the formation of blockages in microfluidic channels.