Abstract:
A communication system comprises a transmitter and a receiver that communicate differential phase modulated data over a wireline channel pair. The transmitter encodes data symbols by generating first and second data signals with differentially phase shifted signal transitions with respect to one another. The receiver receives the first data signal and the second data signal and samples the first data signal based on a signal transition timing of the second data signal to generate a first output data symbol. The receiver furthermore samples the second data signal based on signal transition timing of the first data signal to generate a second output data symbol.
Abstract:
A photonic communication system in which a host communicates bidirectionally with a target via a single optical fiber using light of the same wavelength and from the same light source. Signals flowing in opposite directions are discriminated based on polarity. Using the same fiber and light source in both directions reduces cost, complexity, and power consumption.
Abstract:
A communication system comprises a transmitter and a receiver that communicate differential phase modulated data over a wireline channel pair. The transmitter encodes data symbols by generating first and second data signals with differentially phase shifted signal transitions with respect to one another. The receiver receives the first data signal and the second data signal and samples the first data signal based on a signal transition timing of the second data signal to generate a first output data symbol. The receiver furthermore samples the second data signal based on signal transition timing of the first data signal to generate a second output data symbol.
Abstract:
A communication system comprises a transmitter and a receiver that communicate differential phase modulated data over a wireline channel pair. The transmitter encodes data symbols by generating first and second data signals with differentially phase shifted signal transitions with respect to one another. The receiver receives the first data signal and the second data signal and samples the first data signal based on a signal transition timing of the second data signal to generate a first output data symbol. The receiver furthermore samples the second data signal based on signal transition timing of the first data signal to generate a second output data symbol.
Abstract:
The embodiments herein describe technologies of an amplifier circuit that is designed for wideband communication with superconductive components in cryogenic applications, including Josephson Junction integrated circuits, operating in a cryogenic temperature domain (e.g., 4K). The amplifier circuit operates in a temperature domain (e.g., 77K) that is higher than the cryogenic temperature domain of the superconductive components.
Abstract:
The embodiments herein describe technologies of an amplifier circuit that is designed for wideband communication with superconductive components in cryogenic applications, including Josephson Junction integrated circuits, operating in a cryogenic temperature domain (e.g., 4K). The amplifier circuit operates in a temperature domain (e.g., 77K) that is higher than the cryogenic temperature domain of the superconductive components.
Abstract:
The embodiments herein describe technologies of cryogenic digital systems with a first component located in a first cryogenic temperature domain and a second component located in a second cryogenic temperature domain that is lower in temperature than the first cryogenic temperature domain. An electrical conductor is coupled between the first component and the second component along a first plane. The electrical conductor carries a signal between the first component and the second component. A cooling assembly is coupled to a segment of the electrical conductor. The cooling assembly may include an electrical insulator including ceramic material. The cooling assembly may include a cold plate, two cold plates, or an orthogonal cold strip.
Abstract:
An integrated circuit device includes an output driver having a data signal terminal, logic circuitry, and a driver circuit coupled to the logic circuitry and data signal terminal. The driver circuit is configured to drive a signal corresponding to a symbol onto the data signal terminal, wherein the symbol is an N-bit symbol, having one of 2N predefined values, N is an integer greater than 1, and the signal corresponding to the symbol has one of 2N signal levels. The driver circuit includes first, second and third driver sub-circuits, each driven by an input corresponding to one or more bits of the N-bit symbol, wherein the second and third driver sub-circuits are weighted, relative to the first driver sub-circuit, to reduce gds distortion in the signal.
Abstract:
An integrated circuit device includes a sense amplifier with an input to receive a present signal representing a present bit. The sense amplifier is to produce a decision regarding a logic level of the present bit. The integrated circuit device also includes a circuit to precharge the input of the sense amplifier by applying to the input of the sense amplifier a portion of a previous signal representing a previous bit. The integrated circuit device further includes a latch, coupled to the sense amplifier, to output the logic level.
Abstract:
A single-ended data transmission system transmits a signal having a signal voltage that is referenced to a power supply voltage and that swings above and below the power supply voltage. The power supply voltage is coupled to a power supply rail that also serves as a signal return path. The signal voltage is derived from two signal supply voltages generated by a pair of charge pumps that draw substantially same amount of current from a power supply.