Abstract:
A method of fabricating a multilayer printed circuit board includes forming a first circuit-forming pattern and a via-forming pattern on a first carrier, and forming a first insulation layer; repeatedly forming inner circuit patterns and inner insulation layers over the first insulation layer by forming circuit-forming patterns and imprinting, and forming inner vias connecting the inner circuit patterns positioned on different insulation layers; forming a second circuit-forming pattern on a second carrier and inserting the first circuit-forming pattern and the second circuit-forming pattern respectively into the first insulation layer and a second insulation layer; removing the first carrier and the second carrier; forming circuit-forming grooves by removing the first circuit-forming pattern and the second circuit-forming pattern, and forming via-forming indentations connected with the circuit-forming grooves; and forming outer circuit patterns and outer vias by filling the circuit-forming grooves and the via-forming indentations with a conductive material.
Abstract:
An object of the invention is to provide an LED drive circuit that can suppress the generation of harmonic noise. The LED drive circuit includes a rectifying circuit an LED array, and a current supply circuit which includes a capacitor and a time constant adjusting element, wherein the discharge time constant of the current supply circuit is set longer than the charge time constant of the current supply circuit, and wherein during a period of time when the magnitude of AC commercial power supply voltage is larger than the light emission threshold of the LED array, current to the light-emitting circuit is supplied mostly from the rectifying circuit, and during a period of time when the magnitude of AC commercial power supply voltage is not larger than the light emission threshold of the LED array, current to the light-emitting circuit is supplied from the current supply circuit.
Abstract:
A method of fabricating a printed circuit board is disclosed. A method of fabricating a printed circuit board that includes: stacking an insulation layer on at least one surface of a core layer, on which an inner circuit is formed, and forming an outer circuit pattern; burying the outer circuit pattern in the insulation layer; removing the outer circuit pattern to form minute grooves and curing the insulation layer; and forming an outer circuit by filling metal in the minute grooves, makes it possible to readily form high-resolution fine-line circuits, as well as to reduce fabrication costs and increase productivity.
Abstract:
Disclosed herein is a printed circuit board, including: a base substrate; insulation layers which are formed on both sides of the base substrate and in which trenches are formed; and circuit layers including circuit patterns and vias formed in the trenches using a plating process. The printed circuit board is advantageous in that trenches are formed in both sides of a base substrate, so that a fine circuit pattern can be simultaneously formed on both sides thereof, thereby simplifying the manufacturing process thereof.
Abstract:
A train car-to-car communication device includes: a terminal; an intra-composition transmission line connected to the terminal within the same composition for transmitting information; a composition-to-composition communication relay unit connected to the intra-composition transmission line for receiving first information from the terminal within the composition and transmitting the first information to an adjacent composition, and receiving second information from the adjacent composition and transmitting the second information to the terminal within the composition of interest; and a composition-to-composition transmission line for connecting the composition-to-composition communication relay units of the adjacent compositions and transmitting the information, and the composition-to-composition communication relay unit determines a difference between composition directions of the composition as a transmission source of the received information and the composition to which the composition-to-composition communication relay unit of interest belongs, and rewrites to invert direction-dependent information contained in the received information if the composition directions are different.
Abstract:
A method of fabricating a circuit board is disclosed. The method includes: forming a trench in a base and forming an electroless plating layer over a surface of the base and an inner surface of the trench; providing a carrier, on one side of which a plating resist is coated; forming a transcribed part on the surface of the base by stacking the carrier onto the base and transcribing the plating resist onto the surface of the base; forming a pattern in the trench by plating, and removing the transcribed part; and removing portions of the electroless plating layer and the pattern. This method makes it possible to form circuit patterns with a uniform thickness and to provide high workability.
Abstract:
A method of fabricating a printed circuit board is disclosed. A method of fabricating a printed circuit board that includes: stacking an insulation layer on at least one surface of a core layer, on which an inner circuit is formed, and forming an outer circuit pattern; burying the outer circuit pattern in the insulation layer; removing the outer circuit pattern to form minute grooves and curing the insulation layer; and forming an outer circuit by filling metal in the minute grooves, makes it possible to readily form high-resolution fine-line circuits, as well as to reduce fabrication costs and increase productivity.
Abstract:
A method of fabricating a high density printed circuit board by applying a strippable adhesive layer on a reinforced substrate (rigid substrate or carrier film) used as a base substrate, forming a metal foil on the adhesive layer by means of plating, lamination or sputtering, and forming a high density circuit on the metal foil serving as a seed layer by means of pattern plating. Specifically, the method of the current invention includes the steps of attaching adhesive means to one surface of a reinforced substrate (rigid substrate or carrier film), forming a seed layer on the adhesive means and forming a circuit pattern on the seed layer, laminating an insulating layer on the circuit pattern and removing the reinforced substrate (rigid substrate or carrier film), and removing the seed layer.
Abstract:
An LCD device includes a transparent glass plate 122 and thin film transistor electrodes 124 formed on the glass plate 122. A photosensitive insulation film 128 is coated on the glass plate 122 and the thin film transistor electrodes 124. The insulation film 128 includes transparent and reflective regions 134 and 133 which are different in thickness. Light shielding films 126 are positioned underneath boundaries of the transparent and reflective regions 134 and 133. Where an optical exposure stage includes different reflection coefficient portions, the light shielding films 126 prevent light reflected by the exposure stage from reaching the insulation film thereby maintaining the accuracy of its patterning.
Abstract:
A first signal line and a second signal line are paired, and in one signal line selection period, CPU of the inspection circuit controls a write circuit and writes analog signals into the first signal line selected by means of a switch of the selection circuit. In the next signal line selection period, CPU controls a read circuit and reads output signals from the second signal line selected by means of the switch. CPU detects a short circuit between the paired signal lines based upon the output signals from the second signal line.