Abstract:
A non-volatile memory cell, and method of making, that includes a semiconductor substrate having a fin shaped upper surface with a top surface and two side surfaces. Source and drain regions are formed in the fin shaped upper surface portion with a channel region there between. A conductive floating gate includes a first portion extending along a first portion of the top surface, and second and third portions extending along first portions of the two side surfaces, respectively. A conductive control gate includes a first portion extending along a second portion of the top surface, second and third portions extending along second portions of the two side surfaces respectively, a fourth portion extending up and over at least some of the floating gate first portion, and fifth and sixth portions extending out and over at least some of the floating gate second and third portions respectively.
Abstract:
A method of forming split gate non-volatile memory cells on the same chip as logic and high voltage devices having HKMG logic gates. The method includes forming the source and drain regions, floating gates, control gates, and the poly layer for the erase gates and word line gates in the memory area of the chip. A protective insulation layer is formed over the memory area, and an HKMG layer and poly layer are formed on the chip, removed from the memory area, and patterned in the logic areas of the chip to form the logic gates having varying amounts of underlying insulation.
Abstract:
A memory device having a pair of conductive floating gates with inner sidewalls facing each other, and disposed over and insulated from a substrate of first conductivity type. A pair of spaced apart conductive control gates each disposed over and insulated from one of the floating gates, and each including inner sidewalls facing each other. A pair of first spacers of insulation material extending along control gate inner sidewalls and over the floating gates. The floating gate inner sidewalls are aligned with side surfaces of the first spacers. A pair of second spacers of insulation material each extend along one of the first spacers and along one of the floating gate inner sidewalls. A trench formed into the substrate having sidewalls aligned with side surfaces of the second spacers. Silicon carbon disposed in the trench. Material implanted into the silicon carbon forming a first region having a second conductivity type.
Abstract:
A non-volatile memory cell includes a substrate of a first conductivity type, having a first region of a second conductivity type, a second region of the second conductivity type spaced apart from the first region, forming a channel region therebetween. A floating gate is disposed over and insulated from a first portion of the channel region which is adjacent the first region. A select gate is disposed over a second portion of the channel region adjacent to the second region, the select gate being formed of a metal material and being insulated from the second portion of the channel region by a layer of silicon dioxide and a layer of high K insulating material. A control gate is disposed over and insulated from the floating gate. An erase gate is disposed over and insulated from the first region, and disposed laterally adjacent to and insulated from the floating gate.
Abstract:
A non-volatile memory cell including a substrate having first and second regions with a channel region therebetween. A floating gate is disposed over and insulated from a first portion of the channel region which is adjacent the first region. A select gate is disposed over and insulated from a second portion of the channel region which is adjacent to the second region. The select gate includes a block of polysilicon material and a work function metal material layer extending along bottom and side surfaces of the polysilicon material block. The select gate is insulated from the second portion of the channel region by a silicon dioxide layer and a high K insulating material layer. A control gate is disposed over and insulated from the floating gate, and an erase gate is disposed over and insulated from the first region, and disposed laterally adjacent to and insulated from the floating gate.
Abstract:
A non-volatile memory cell includes a semiconductor substrate of first conductivity type, first and second spaced-apart regions in the substrate of second conductivity type, with a channel region in the substrate therebetween. A floating gate has a first portion disposed vertically over a first portion of the channel region, and a second portion disposed vertically over the first region. The floating gate includes a sloping upper surface that terminates with one or more sharp edges. An erase gate is disposed vertically over the floating gate with the one or more sharp edges facing the erase gate. A control gate has a first portion disposed laterally adjacent to the floating gate, and vertically over the first region. A select gate has a first portion disposed vertically over a second portion of the channel region, and laterally adjacent to the floating gate.
Abstract:
A method of forming a memory device with memory cells over a planar substrate surface and FinFET logic devices over fin shaped substrate surface portions, including forming a protective layer over previously formed floating gates, erase gates, word line poly and source regions in a memory cell portion of the substrate, then forming fins into the surface of the substrate and forming logic gates along the fins in a logic portion of the substrate, then removing the protective layer and completing formation of word line gates from the word line poly and drain regions in the memory cell portion of the substrate.
Abstract:
A memory device including a silicon substrate having a planar upper surface in a memory cell area and an upwardly extending silicon fin in a logic device area. The silicon fin includes side surfaces extending up and terminating at a top surface. The logic device includes spaced apart source and drain regions with a channel region extending there between (along the top surface and the side surfaces), and a conductive logic gate disposed over the top surface and laterally adjacent to the side surfaces. The memory cell includes spaced apart source and drain regions with a second channel region extending there between, a conductive floating gate disposed over one portion of the second channel region, a conductive word line gate disposed over another portion of the second channel region, a conductive control gate disposed over the floating gate, and a conductive erase gate disposed over the source region.
Abstract:
A method of forming a memory device that includes forming a first insulation layer on a semiconductor substrate, forming a conductive material layer on the first insulation layer, forming an insulation block on the conductive material layer, forming an insulation spacer along a side surface of the insulation block and on the conductive material layer, etching the conductive material layer to form a block of the conductive material disposed directly under the insulation block and the insulation spacer, removing the insulation spacer, forming a second insulation layer having a first portion wrapping around an exposed upper edge of the block of the conductive material and a second portion disposed on a first portion of the first insulation layer over the substrate, and forming a conductive block insulated from the block of the conductive material by the second insulation layer and from the substrate by the first and second insulation layers.
Abstract:
A simplified method for forming pairs of non-volatile memory cells using two polysilicon depositions. A first polysilicon layer is formed on and insulated from the semiconductor substrate in a first polysilicon deposition process. A pair of spaced apart insulation blocks are formed on the first polysilicon layer. Exposed portions of the first poly silicon layer are removed while maintaining a pair of polysilicon blocks of the first polysilicon layer each disposed under one of the pair of insulation blocks. A second polysilicon layer is formed over the substrate and the pair of insulation blocks in a second polysilicon deposition process. Portions of the second polysilicon layer are removed while maintaining a first polysilicon block (disposed between the pair of insulation blocks), a second polysilicon block (disposed adjacent an outer side of one insulation block), and a third polysilicon block (disposed adjacent an outer side of the other insulation block).