Abstract:
The present disclosure relates to a memory cell comprising a vertical selection gate extending in a trench made in a substrate, a floating gate extending above the substrate, and a horizontal control gate extending above the floating gate, wherein the floating gate also extends above a portion of the vertical selection gate over a non-zero overlap distance. Application mainly to the production of a split gate memory cell programmable by hot-electron injection.
Abstract:
A method controls a memory that includes twin memory cells formed in a semiconductor substrate. Each memory cell includes a floating-gate transistor including a state control gate, in series with a select transistor that includes a vertical select control gate, common to the twin memory cells, and a source connected to an embedded source line, common to the memory cells. The drains of the floating-gate transistors of the twin memory cells are connected to a same bit line. The method includes controlling a memory cell so as to turn it on to couple the source line to a bit line coupled to the ground, during a step of programming or reading another memory cell.
Abstract:
The present disclosure relates to a method for controlling two twin memory cells each comprising a floating-gate transistor comprising a state control gate, in series with a select transistor comprising a select control gate common to the two memory cells, the drains of the floating-gate transistors being connected to a same bit line, the method comprising steps of programming the first memory cell by hot-electron injection, by applying a positive voltage to the bit line and a positive voltage to the state control gate of the first memory cell, and simultaneously, of applying to the state control gate of the second memory cell a positive voltage capable of causing a programming current to pass through the second memory cell, without switching it to a programmed state.
Abstract:
The present disclosure relates to a memory cell comprising a vertical selection gate extending in a trench made in a substrate, a floating gate extending above the substrate, and a horizontal control gate extending above the floating gate, wherein the floating gate also extends above a portion of the vertical selection gate over a non-zero overlap distance. Application mainly to the production of a split gate memory cell programmable by hot-electron injection.
Abstract:
A method of manufacturing a MOS transistor includes forming a conductive first gate and forming insulating spacers along opposite sides of the gate, wherein the spacers are formed before the gate.
Abstract:
In accordance with an embodiment of the present invention, a method of making a semiconductor device includes simultaneously etching a semiconductor layer and a conductive layer to form a self-aligned diode region disposed on an insulating layer, where the semiconductor layer has a first conductivity type. The method further includes etching through first openings of a mask layer to form first implantation surfaces on the semiconductor layer and to form a plurality of projecting regions including conductive material of the conductive layer over the semiconductor layer. The method further includes using the plurality of projecting regions as a part of a first implantation mask, performing a first implantation of dopants having a second conductivity type into the semiconductor layer, to form a sequence of PN junctions forming diodes in the semiconductor layer. The diodes vertically extend from an upper surface of the semiconductor layer to the insulating layer.
Abstract:
A memory device includes a first state transistor and a second state transistor having a common control gate. A first selection transistor is buried in the semiconductor body and coupled to the first state transistor so that current paths of the first selection transistor and first state transistor are coupled in series. A second selection transistor is buried in the semiconductor body and coupled to the second state transistor so that current paths of the second selection transistor and second state transistor are coupled in series. The first and second selection transistors have a common buried selection gate. A dielectric region is located between the common control gate and the semiconductor body. A first bit line is coupled to the first state transistor and a second bit line is coupled to the second state transistor.
Abstract:
Each memory cell is of the type with charge trapping in a dielectric interface and includes a state transistor selectable by a vertical selection transistor buried in a substrate and comprising a buried selection gate. The columns of memory cells include pairs of twin memory cells. The two selection transistors of a pair of twin memory cells have a common selection gate and the two state transistors of a pair of twin memory cells have a common control gate. The device also includes, for each pair of twin memory cells, a dielectric region situated between the control gate and the substrate and overlapping the common selection gate so as to form on either side of the selection gate the two charge-trapping dielectric interfaces respectively dedicated to the two twin memory cells.
Abstract:
An integrated circuit includes a semiconductor substrate with an electrically isolated semiconductor well. An upper trench isolation extends from a front face of the semiconductor well to a depth located a distance from the bottom of the well. Two additional isolating zones are electrically insulated from the semiconductor well and extending inside the semiconductor well in a first direction and vertically from the front face to the bottom of the semiconductor well. At least one hemmed resistive region is bounded by the two additional isolating zones, the upper trench isolation and the bottom of the semiconductor well. Electrical contacts are electrically coupled to the hemmed resistive region.
Abstract:
Various embodiments provide a memory cell that includes a vertical selection gate, a floating gate extending above the substrate, wherein the floating gate also extends above a portion of the vertical selection gate, over a non-zero overlap distance, the memory cell comprising a doped region implanted at the intersection of a vertical channel region extending opposite the selection gate and a horizontal channel region extending opposite the floating gate.