Abstract:
An integrated circuit device includes a fin-type active region on a substrate; at least one nanosheet having a bottom surface facing the fin top; a gate line on the fin-type active region; and a source/drain region on the fin-type active region, adjacent to the gate line, and in contact with the at least one nanosheet, wherein the source/drain region includes a lower main body layer and an upper main body layer, a top surface of the lower main body layer includes a lower facet declining toward the substrate as it extends in a direction from the at least one nanosheet to a center of the source/drain region, and the upper main body layer includes a bottom surface contacting the lower facet and a top surface having an upper facet. With respect to a vertical cross section, the lower facet extends along a corresponding first line and the upper facet extends along a second line that intersects the first line.
Abstract:
An integrated circuit device includes a plurality of fin-type active areas extending in a first horizontal direction on a substrate, a plurality of channel regions respectively on the plurality of fin-type active areas, a plurality of gate lines surrounding the plurality of channel regions on the plurality of fin-type active areas and extending in a second horizontal direction that crosses the first horizontal direction, and a plurality of source/drain regions respectively at positions adjacent to the plurality of gate lines on the plurality of fin-type active areas and respectively in contact with the plurality of channel regions, and the plurality of source/drain regions respectively include a plurality of semiconductor layers and at least one air gap located therein.
Abstract:
An integrated circuit (IC) device includes a fin-type active region, a channel region on the fin-type active region, a gate line surrounding the channel region on the fin-type active region, a source/drain region that is adjacent to the gate line on the fin-type active region and has a sidewall facing the channel region, wherein the source/drain region includes a first buffer layer, a second buffer layer, and a main body layer, which are sequentially stacked in a direction away from the fin-type active region, each include a Si1-xGex layer (x≠0) doped with a p-type dopant, and have different Ge concentrations, and the second buffer layer conformally covers a surface of the first buffer layer that faces the main body layer. A thickness ratio of the side buffer portion to the bottom buffer portion is in a range of about 0.9 to about 1.1.
Abstract:
A semiconductor device includes an active region extending on a substrate in a first direction, a plurality of channel layers on the active region to be spaced apart from each other in a vertical direction, perpendicular to an upper surface of the substrate, the plurality of channel layers including silicon germanium, a gate structure intersecting the active region and the plurality of channel layers on the substrate to surround the plurality of channel layers, respectively, a source/drain region on the active region on at least one side of the gate structure, the source/drain region in contact with the plurality of channel layers, and a substrate insulating layer disposed between the source/drain region and the substrate. The source/drain region includes a first layer in contact with a side surface of the gate structure, side surfaces of the plurality of channel layers, and an upper surface of the substrate insulating layer.
Abstract:
An integrated circuit device includes a fin-type active area along a first horizontal direction on a substrate, a device isolation layer on opposite sidewalls of the fin-type active area, a gate structure along a second horizontal direction crossing the first horizontal direction, the gate structure being on the fin-type active area and on the device isolation layer, and a source/drain area on the fin-type active area, the source/drain area being adjacent to the gate structure, and including an outer blocking layer, an inner blocking layer, and a main body layer sequentially stacked on the fin-type active area, and each of the outer blocking layer and the main body layer including a Si1-xGex layer, where x≠0, and the inner blocking layer including a Si layer.
Abstract:
A semiconductor device includes a substrate, a device isolation layer on the substrate, the device isolation layer defining a first active pattern, a pair of first source/drain patterns on the first active pattern, the pair of first source/drain patterns being spaced apart from each other in a first direction, and each of the pair of first source/drain patterns having a maximum first width in the first direction, a first channel pattern between the pair of first source/drain patterns, a gate electrode on the first channel pattern and extends in a second direction intersecting the first direction, and a first amorphous region in the first active pattern, the first amorphous region being below at least one of the pair of first source/drain patterns, and having a maximum second width in the first direction that is less than the maximum first width.
Abstract:
A semiconductor device includes a channel, a first source/drain structure on a first side surface of the channel, a second source/drain structure on a second side surface of the channel, a gate structure surrounding the channel, an inner spacer layer on a side surface of the gate structure, and an outer spacer layer on an outer surface of the inner spacer layer. The first source/drain structure includes a first source/drain layer on the channel and a second source/drain layer on the first source/drain layer, and on a plane of the semiconductor device that passes through the channel, at least one of a first boundary line of the first source/drain layer in contact with the second source/drain layer and a second boundary line of the first source/drain layer in contact with the channel may be convex, extending toward the channel.
Abstract:
A semiconductor device includes a substrate, a fin structure on the substrate, a gate structure on the fin structure, a gate spacer on at least on side surface of the gate structure, and a source/drain structure on the fin structure, wherein a topmost portion of a bottom surface of the gate spacer is lower than a topmost portion of a top surface of the fin structure, and a topmost portion of a top surface of the source/drain structure is lower than the topmost portion of the top surface of the fin structure.
Abstract:
Semiconductor devices and methods of forming the same are provided. The methods may implanting dopants into a substrate to form a preliminary impurity region and heating the substrate to convert the preliminary impurity region into an impurity region. Heating the substrate may be performed at an ambient temperature of from about 800° C. to about 950° C. for from about 20 min to about 50 min. The method may also include forming first and second trenches in the impurity region to define an active tin and forming a first isolation layer and a second isolation layer in the first and second trenches, respectively. The first and second isolation layers may expose opposing sides of the active fin. The method may further include forming a gate insulation layer extending on the opposing sides and an upper surface of the active fin and forming a gate electrode traversing the active fin.
Abstract:
The inventive concepts provide methods of manufacturing a semiconductor device. The method includes patterning a substrate to form an active pattern, forming a gate pattern intersecting the active pattern, forming a gate spacer on a sidewall of the gate pattern, forming a growth-inhibiting layer covering an upper region of the gate pattern, and forming source/drain electrodes at opposite first and second sides of the gate pattern.