Abstract:
A replacement metal gate transistor is formed with high quality gate dielectric under the high-k dielectric. The high quality gate dielectric is formed on the substrate at a temperature of at least 850° C. A sacrificial gate dielectric is formed on the high quality gate dielectric and a polysilicon replacement gate is formed on the sacrificial gate dielectric. The polysilicon replacement gate is removed leaving a gate trench. The sacrificial gate dielectric is removed from a bottom of the gate. A high-k dielectric is deposited into the gate trench. Metal gate material is deposited on the high-k dielectric.
Abstract:
An integrated circuit with a thick TiN metal gate with a work function greater than 4.85 eV and with a thin TiN metal gate with a work function less than 4.25 eV. An integrated circuit with a replacement gate PMOS TiN metal gate transistor with a workfunction greater than 4.85 eV and with a replacement gate NMOS TiN metal gate transistor with a workfunction less than 4.25 eV. An integrated circuit with a gate first PMOS TiN metal gate transistor with a workfunction greater than 4.85 eV and with a gate first NMOS TiN metal gate transistor with a workfunction less than 4.25 eV.
Abstract:
An integrated circuit and method with a metal gate NMOS transistor with a high-k first gate dielectric on a high quality thermally grown interface dielectric and with a metal gate PMOS transistor with a high-k last gate dielectric on a chemically grown interface dielectric.
Abstract:
The gate-to-source and gate-to-drain overlap capacitance of a MOS transistor with a metal gate and a high-k gate dielectric are reduced by forming the high-k gate dielectric along the inside of a sidewall structure which has been formed to lie further away from the source and the drain.
Abstract:
A two-step thermal treatment method consists of performing ion implantation in a silicon substrate of the semiconductor device. A first thermal treatment procedure is performed on the semiconductor device. A second thermal treatment procedure is consecutively performed on the semiconductor device to reduce damage produced by the ion implantation.
Abstract:
An integrated circuit containing metal replacement gates may be formed by forming a nitrogen-rich titanium-based barrier between a high-k gate dielectric layer and a metal work function layer of a PMOS transistor. The nitrogen-rich titanium-based barrier is less than 1 nanometer thick and has an atomic ratio of titanium to nitrogen of less than 43:57. The nitrogen-rich titanium-based barrier may be formed by forming a titanium based layer over the gate dielectric layer and subsequently adding nitrogen to the titanium based layer. The metal work function layer is formed over the nitrogen-rich titanium-based barrier.
Abstract:
A CMOS device having an NMOS transistor with a metal gate electrode comprising a mid-gap metal with a low work function/high oxygen affinity cap and a PMOS transistor with a metal gate electrode comprising a mid gap metal with a high work function/low oxygen affinity cap and method of forming.
Abstract:
An integrated circuit containing an n-channel finFET and a p-channel finFET is formed by forming a first polarity fin epitaxial layer for a first polarity finFET, and subsequently forming a hard mask which exposes an area for a second, opposite, polarity fin epitaxial layer for a second polarity finFET. The second polarity fin epitaxial layer is formed in the area exposed by the hard mask. A fin mask defines the first polarity fin and second polarity fin areas, and a subsequent fin etch forms the respective fins. A layer of isolation dielectric material is formed over the substrate and fins. The layer of isolation dielectric material is planarized down to the fins. The layer of isolation dielectric material is recessed so that the fins extend at least 10 nanometers above the layer of isolation dielectric material. Gate dielectric layers and gates are formed over the fins.
Abstract:
Oxide growth of a gate dielectric layer that occurs between processes used in the fabrication of a gate dielectric structure can be reduced. The reduction in oxide growth can be achieved by maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth of the gate dielectric layer between at least two sequential process steps used in the fabrication the gate dielectric structure. Maintaining the gate dielectric layer in an ambient effective to mitigate oxide growth also improves the uniformity of nitrogen implanted in the gate dielectric.
Abstract:
An integrated circuit and method with a metal gate NMOS transistor with a high-k first gate dielectric on a high quality thermally grown interface dielectric and with a metal gate PMOS transistor with a high-k last gate dielectric on a chemically grown interface dielectric.