摘要:
A shallow trench isolation structure for a semiconductor device and the method for manufacturing the shallow trench isolation device within a semiconductor substrate. The shallow trench isolation structure is divot-free and includes un-annealed dielectric material as the trench fill material. The intersection of the structure and the semiconductor surface in which it is formed, is free of silicon nitride, but the isolation structure may include a silicon nitride liner which is within the trench and recessed below the semiconductor surface.
摘要:
The invention relates to a bipolar transistor structure which includes a layer of semiconductor material having a single crystal raised base, a single crystal or polycrystalline emitter and adjacent polycrystalline regions which provide an electrical connection to the emitter. The invention also relates to the method of fabricating such a structure and includes the step of depositing a conformal layer of semiconductor material of one conductivity type over a region of opposite conductivity and over insulation such that single crystal and polycrystalline regions form over single crystal material and insulation, respectively. In a subsequent step, a layer of opposite conductivity type semiconductor material is deposited on the first layer forming single crystal or polycrystalline material over single crystal and polycrystalline material over polycrystalline. Then, in a final step, the structure is subjected to an out-diffusion step which simultaneously forms a single crystal emitter region of opposite conductivity type, a p-n junction in the one conductivity type single crystal region and regions of opposite conductivity type which act as an interconnection to the emitter region.
摘要:
A method for forming a photovoltaic device includes depositing a p-type layer on a substrate. A barrier layer is formed on the p-type layer by exposing the p-type layer to an oxidizing agent. An intrinsic layer is formed on the barrier layer, and an n-type layer is formed on the intrinsic layer.
摘要:
A gate stack structure for field effect transistor (FET) devices includes a nitrogen rich first dielectric layer formed over a semiconductor substrate surface; a nitrogen deficient, oxygen rich second dielectric layer formed on the nitrogen rich first dielectric layer, the first and second dielectric layers forming, in combination, a bi-layer interfacial layer; a high-k dielectric layer formed over the bi-layer interfacial layer; a metal gate conductor layer formed over the high-k dielectric layer; and a work function adjusting dopant species diffused within the high-k dielectric layer and within the nitrogen deficient, oxygen rich second dielectric layer, and wherein the nitrogen rich first dielectric layer serves to separate the work function adjusting dopant species from the semiconductor substrate surface.
摘要:
The present invention relates to complementary metal-oxide-semiconductor (CMOS) circuits that each contains at least a first and a second gate stacks. The first gate stack is located over a first device region (e.g., an n-FET device region) in a semiconductor substrate and comprises at least, from bottom to top, a gate dielectric layer, a metallic gate conductor, and a silicon-containing gate conductor. The second gate stack is located over a second device region (e.g., a p-FET device region) in the semiconductor substrate and comprises at least, from bottom to top, a gate dielectric layer and a silicon-containing gate conductor. The first and second gate stacks can be formed over the semiconductor substrate in an integrated manner by various methods of the present invention.
摘要:
A method for forming an ultra thin buried oxide layer is described incorporating the steps of forming a first epitaxial layer containing Si on a Si containing substrate having a thickness from about 10 to about 300 angstroms thick, forming a second epitaxial layer containing Si having a thickness from about 100 angstroms to about 1 micron and annealing the substrate at a temperature from 1200° C. to 1400°0 C. in an oxygen containing atmosphere. The invention over comes the problem of the buried oxide breaking up into oxide islands during the anneal.
摘要:
Crack stops for substantially preventing cracks and chips produced along the dicing channel from spreading into the active areas of the ICs are described. The crack stops are formed by creating discontinuities in the thickness of the dielectric layer in the dicing channel near the chip edges. The discontinuities can result in increasing and/or decreasing the thickness of the dielectric layer.
摘要:
Crack stops for substantially preventing cracks and chips produced along the dicing channel from spreading into the active areas of the ICs are described. The crack stops are formed by creating discontinuities in the thickness of the dielectric layer in the dicing channel near the chip edges. The discontinuities can result in increasing and/or decreasing the thickness of the dielectric layer.
摘要:
Semiconductor-on-insulator (SOI) substrates including a buried oxide (BOX) layer having a thickness of less than 300 Å are provided. The (SOI) substrates having the thin BOX layer are provided using a method including a step in which oxygen ions are implanted at high substrate temperatures (greater than 600° C.), and at a low implant energy (less than 40 keV). An anneal step in an oxidizing atmosphere follows the implant step and is performed at a temperature less than 1250° C. The anneal step in oxygen containing atmosphere converts the region containing implanted oxygen atoms formed by the implant step into a BOX having a thickness of less than 300 Å. In some instances, the top semiconductor layer of the SOI substrate has a thickness of less than 300 Å.
摘要:
Semiconductor-on-insulator (SOI) substrates including a buried oxide (BOX) layer having a thickness of less than 300 Å are provided. The (SOI) substrates having the thin BOX layer are provided using a method including a step in which oxygen ions are implanted at high substrate temperatures (greater than 600° C.), and at a low implant energy (less than 40 keV). An anneal step in an oxidizing atmosphere follows the implant step and is performed at a temperature less than 1250° C. The anneal step in oxygen containing atmosphere converts the region containing implanted oxygen atoms formed by the implant step into a BOX having a thickness of less than 300 Å. In some instances, the top semiconductor layer of the SOI substrate has a thickness of less than 300 Å.