Abstract:
Silicon is selectively oxidized relative to a metal-containing material in a partially-fabricated integrated circuit. In some embodiments, the silicon and metal-containing materials are exposed portions of a partially-fabricated integrated circuit and may form part of, e.g., a transistor. The silicon and metal-containing material are oxidized in an atmosphere containing an oxidant and a reducing agent. In some embodiments, the reducing agent is present at a concentration of about 10 vol % or less.
Abstract:
Process for producing silicon oxide containing thin films on a growth substrate by the ALCVD method. In the process, a vaporizable silicon compound is bonded to the growth substrate, and the bonded silicon compound is converted to silicon dioxide. The invention comprises using a silicon compound which contains at least one organic ligand and the bonded silicon compound is converted to silicon dioxide by contacting it with a vaporized, reactive oxygen source, in particular with ozone. The present invention provides a controlled process for growing controlling thin films containing SiO2, with sufficiently short reaction times.
Abstract:
Process for producing silicon oxide containing thin films on a growth substrate by the ALCVD method. In the process, a vaporisable silicon compound is bonded to the growth substrate, and the bonded silicon compound is converted to silicon dioxide. The invention comprises using a silicon compound which contains at least one organic ligand and the bonded silicon compound is converted to silicon dioxide by contacting it with a vaporised, reactive oxygen source, in particular with ozone. The present invention provides a controlled process for growing controlling thin films containing SiO2 with sufficiently short reaction times.
Abstract:
A deposition station allows atomic layer deposition (ALD) of films onto a substrate. The station comprises an upper and a lower substantially flat part between which a substrate is accommodated. The parts are positioned opposite each other and parallel to the substrate during processing. At least one of the parts is provided with a plurality of gas channels that allow at least two mutually reactive reactants to be discharged out of that part to the substrate. The discharge is configured to occur in a sequence of alternating, separated pulses for ALD. In addition, each part is preferably configured to be about 1 mm or less from the substrate to minimize the volume of the reaction chamber to increase the efficiency with which gases are purged from the chamber. Also, for each reactant, the upper and lower parts are preferably kept at a temperature outside of the window in which optimal ALD of that reactant occurs, thereby minimizing deposition of that reactant on deposition station surfaces.
Abstract:
A system for processing semiconductor substrates includes a front-end with at least two vertical levels of input/output ports for transferring substrate cassettes into or out of the housing of the processing system. The front-end also includes at least one level of storage positions, e.g., two levels of storage positions, which can be disposed between the two vertical levels of the input/output ports. The two vertical levels of storage positions can each be provided with two storage positions and each of two levels of input/output ports can be provided with accommodations for two cassettes, allowing for a total of eight cassettes to be accommodated at the front-end of the processing system. Inside the housing of the processing system, interior storage positions can be provided adjacent a wafer handling chamber and spaced apart from a cassette store having rotary platforms for housing cassettes. A single cassette handler can be used to access cassettes at each of the input/output ports and the interior storage positions.
Abstract:
Titanium silicon nitride (TiSiN) films are formed in a cyclic chemical vapor deposition process. In some embodiments, the TiSiN films are formed in a batch reactor using TiCl4, NH3 and SiH4 as precursors. Substrates are provided in a deposition chamber of the batch reactor. In each deposition cycle, a TiN layer is formed on the substrates by flowing TiCl4 into the deposition chamber simultaneously with NH3. The deposition chamber is subsequently flushed with NH3. to prepare the TiN layer for silicon incorporation. SiH4 is subsequently flowed into the deposition chamber. Silicon from the SiH4 is incorporated into the TiN layers to form TiSiN. Exposing the TiN layers to NH3 before the silicon precursor has been found to facilitate efficient silicon incorporation into the TiN layers to form TiSiN.
Abstract:
The present invention provides a method of fabricating a semiconductor device, which could advance the commercialization of semiconductor devices with a copper interconnect. In a process of metal interconnect line fabrication, a TiN thin film combined with an Al intermediate layer is used as a diffusion barrier on trench or via walls. For the formation, Al is deposited on the TiN thin film followed by copper filling the trench. Al diffuses to TiN layer and reacts with oxygen or nitrogen, which will stuff grain boundaries efficiently, thereby blocking the diffusion of copper successfully.
Abstract:
A doped silicon layer is formed in a batch process chamber at low temperatures. The silicon precursor for the silicon layer formation is a polysilane, such as trisilane, and the dopant precursor is an n-type dopant, such as phosphine. The silicon precursor can be flowed into the process chamber with the flow of the dopant precursor or separately from the flow of the dopant precursor. Surprisingly, deposition rate is independent of dopant precursor flow, while dopant incorporation linearly increases with the dopant precursor flow.
Abstract:
Processes are provided for selectively depositing thin films comprising one or more noble metals on a substrate by vapor deposition processes. In some embodiments, atomic layer deposition (ALD) processes are used to deposit a noble metal containing thin film on a high-k material, metal, metal nitride or other conductive metal compound while avoiding deposition on a lower k insulator such as silicon oxide. The ability to deposit on a first surface, such as a high-k material, while avoiding deposition on a second surface, such as a silicon oxide or silicon nitride surface, may be utilized, for example, in the formation of a gate electrode.
Abstract:
Methods and systems for depositing a film on a substrate are disclosed. In one embodiment, a method includes converting a non-gaseous precursor into vapor phase. Converting the precursor includes: forming a fluidized bed by flowing gas at a sufficiently high flow rate to suspend and stir a plurality of solid particles, and converting the phase of the non-gaseous precursor into vapor phase in the fluidized bed. The method also includes transferring the precursor in vapor phase through a passage; and performing deposition on one or more substrates with the transferred precursor in vapor phase.