Abstract:
A mixing apparatus for producing a feedstock for a reformer, the mixing apparatus including at least one mixing vessel comprising a cylindrical vessel with a conical bottom; a steam inlet configured for introducing steam into the conical bottom; a carbonaceous material inlet configured for introducing a carbonaceous feed into the cylindrical vessel; and an outlet for a reformer feedstock comprising at least 0.3 pounds of steam per pound of carbonaceous material, with the at least one mixing vessel configured for operation at a pressure of greater than about 10 psig.
Abstract:
The present invention relates to a tube joint for joining first and second tubes located in a fired heater for heating process fluids, e.g., process heaters and heated tubular reactors both with and without catalyst. The tubes are joined in face-to-face contact, e.g., by welding the tube joint of the first tube to the tube joint of the second tube.
Abstract:
The present invention provides isothermal multitube reactors suitable for the production of chlorinated and/or fluorinated propene and higher alkenes from the reaction of chlorinated and/or fluorinated alkanes and chlorinated and/or fluorinated alkenes. The reactors utilize a feed mixture inlet temperature at least 20° C. different from a desired reaction temperature.
Abstract:
Method of reducing fouling in an elastomer polymerization process that includes providing a reactor capable of housing an industrial-scale elastomer polymerization reaction, and applying a mechanical force to the reactor so as to create a vibration in at least one wall of the reactor, in which fouling is reduced in the reactor. In one embodiment the reaction is an industrial scale butyl polymerization reaction and the reactor is a butyl polymerization reactor.
Abstract:
The present invention describes an exchanger-reactor for carrying out endothermic reactions, comprising a shell inside which a heat transfer fluid moves, said shell enclosing a plurality of tubes inside which the reactant fluid moves, the tubes being of the bayonet type, and the reactor not having a tube plate. This reactor may operate with a pressure difference between the tube side and the shell side which may be up to 100 bars.
Abstract:
The invention relates to a method for converting silicon tetrachloride having hydrogen to trichlorosilane in a hydrodechlorination reactor, wherein the hydrodechlorination reactor is operated under pressure and comprises one or more reactor tubes which are made of a ceramic material. The invention further relates to the use of such a hydrodechlorination reactor as an integral component of a system for producing trichlorosilane from metallurgical silicon.
Abstract:
Process for heating a polymer-containing stream being transferred from a polymerization reactor to a separation zone or device, by passing the stream through a heater having at least one transfer line for the stream and a heater for heating the transfer line. The average particle size of the solid polymer is less than 3mm, the mass flowrate of the polymer-containing stream exiting the heater is no more than 15% greater than the mass flowrate exiting the reactor, the average velocity of the polymer-containing stream either at a point 80% along the length of the heated part of the transfer line measured from the transfer line inlet, or at the transfer line outlet, is at least 6 m/s, and the pressure drop across the transfer line per unit length is between 0.0125 bar/m and 0.1 bar/m.
Abstract:
The invention relates to a tube bundle reactor with a flat feed hood. Alternatively, the release hood may also have a flat design. The flat design reduces the heat of reaction which arises in the hood in the case of reaction types which take place not only in the tube bundle (uncatalyzed reactions and reactions with homogeneously distributed catalyst). This greatly suppresses undesired reactions which already take place in the hood owing to accumulated heat, which achieves a higher selectivity in the case of thermally sensitive reactions. In addition, the thermal distribution within the hoods can be controlled precisely.The tube bundle reactor comprises a tube bundle which has a feed end which is connected to a feed hood of the tube bundle reactor, wherein the feed hood is configured in a flat design with a cross-sectional area at the feed end and an internal volume, and the ratio of internal volume to cross-sectional area is less than 0.35 m. The invention is further implemented by means of a process for operating a tube bundle reactor, comprising: introducing a reactant mixture into a tube bundle and converting at least a proportion of the reactant mixture within the tube bundle to a product. The introducing comprises: feeding the reactant mixture into an interior of a feed hood of the tube bundle reactor and passing the reactant mixture on into a feed end of the tube bundle in the form of a fluid stream. The fluid stream has a cross-sectional area on entry into the feed end, and the interior of the feed hood through which the fluid stream flows has an internal volume; where the ratio of internal volume to cross-sectional area is less than 0.35 m.
Abstract:
In a process for the hydrogenation of chlorosilanes, a gas mixture of a chlorosilane gas to be hydrogenated and hydrogen gas is heated in a reactor to temperatures in the range between 500° C. and 1800° C. The chlorosilane gas is thereby at least partially hydrogenated. The reactor is heated by way of at least one flame from a fire box surrounding the reactor for the purpose of heating the gas mixture.
Abstract:
Process and apparatus to form vinyl chloride monomer from ethylene dichloride in a cracking furnace, including a firebox chamber having a thermal protective layer disposed on refractory walls and/or process tubes disposed within the chamber, a quencher to form vinyl chloride monomer, and fractionator separate products. The thermal protective layer which contains an inorganic adhesive for metal/alloy tubes or colloidal silica and/or colloidal alumina for refractory walls or ceramic tubes, a filler, and one or more emissivity agents.