Abstract:
An excrement-treating material has a core part, and a surface layer bonded to the core part by utilizing the adhesion ability of a water-absorbable polymer in the surface layer without using an adhesive. The excrement-treating material suitably exerts the water absorbability and water transport ability inherent to the surface layer. The excrement-treating material is constituted by incorporating pulverized water-absorbable polymer particles of 20 μm to 50 μm, and adding water to the surface of the core part after granulation to noncontinuously form a highly-wet part; reacting a water content in the highly-wet part and the pulverized water-absorbable polymer to noncontinuously form an adhering part; and bonding the surface layer to the core part through the adhering part. Upon absorption of excreted urine, permeation of the urine into the core part is accelerated in a part other than the adhering part.
Abstract:
An oxygen-absorbing resin composition including a base resin (A) which is a thermoplastic resin, an oxygen-absorbing component (B) which is a compound having an unsaturated alicyclic structure, and an oxidation promotion component (C) for promoting the oxidation of the oxygen-absorbing component (B); wherein the oxygen-absorbing component (B) is an imide compound having a molecular weight of not more than 2,000 and obtained by heat-treating an amide having been obtained by reacting an acid anhydride represented by the following formula (1): wherein the ring X is an alicyclic ring having an unsaturated bond, and Y is an alkyl group, with an aromatic amine, and wherein the oxidation promotion component (C) is a compound having a benzyl hydrogen.
Abstract:
Provided are graft copolymer particles enabling introduction of adsorptive functional groups adsorbing metals and others, a method for producing same, and an adsorbent using same. (1) Porous graft copolymer particles containing graft chains introduced into porous particles (particle surface having an average pore diameter of 0.01-50 μm) including at least one resin selected from olefin resins, water-insoluble modified polyvinyl alcohol resins, amide resins, cellulosic resins, chitosan resins and (meth)acrylate resins. (2) A method for producing porous graft copolymer particles including (I) melt-kneading a polymer A and a polymer B other than the polymer A to obtain a compound material, (II) extracting and removing the polymer B from the compound material to obtain a porous material of the polymer A, (III) granulating the porous material, and (IV) introducing graft chains into the porous particles. (3) An adsorbent of porous graft copolymer particles.
Abstract:
To provide an oxygen-absorbing polyester resin composition which exhibits excellent oxygen-absorbing capability even in the absence of transition metal catalyst without affected by the glass transition temperature of a polyester resin that is contained as a base resin.The oxygen-absorbing polyester resin composition including a base resin (A) which is a polyester resin, an oxygen-absorbing component (B) which is a compound having an unsaturated alicyclic structure, and an oxidation promotion component (C) for promoting the oxidation of the oxygen-absorbing component (B), said oxidation promotion component (C) being a compound having a benzyl hydrogen.
Abstract:
A detoxifying agent and a detoxifying method are provided which have a high detoxifying ability in a detoxifying treatment of a discharge gas containing a volatile inorganic hydride and generating in a semiconductor production step. A zeolite is added to a solid metal hydroxide, a solid metal carbonate, a solid basic metal carbonate, or a mixture of these compounds to thereby obtain the detoxifying agent which has the excellent ability to detoxify a discharge gas containing volatile inorganic hydride. The zeolite to be added is a synthetic zeolite selected from zeolite Y, MFI zeolite, mordenite zeolite, beta zeolite, zeolite A, zeolite X, and zeolite L or is a natural zeolite.
Abstract:
A process for capturing sulphur impurities present in gas feeds containing H2 and/or CO:a. desulphurisation with a retaining material containing an active phase,b. optionally, rendering the sulphurised retaining material inert,c. oxidative regeneration of the retaining material,d. optionally, rendering the regenerated retaining material inert, ande. desulphurisation with the retaining material that has been regenerated and rendered inert, and regenerating the retaining material.
Abstract:
A novel method for producing a bone filling material is provided. The method comprises the steps of: (a) kneading ingredient comprising calcium-based material and material comprising binder; (b) molding a predetermined shape of the mixture obtained in step (a) with an injection molding machine having a mold; (c) removing the binder contained in the mold formed in step (b) (i.e., degreasing) to obtain a degreased body; (d) and heating and sintering the degreased body obtained in step (c) to obtain a sintered body.
Abstract:
An anion absorbent comprising sintered clay of porous structure and a rare earth compound supported on the sintered clay. The anion absorbent is produced by a production method of an anion absorbent comprising a mixing step of mixing clay with an additive for making the clay porous, a sintering step of sintering a mixture obtained in the mixing step, and a supporting step of supporting a rare earth compound on the clay before the mixing step and/or on a sintered matter after the sintering step. A water treatment method comprising a step of bringing the anion absorbent into contact with water to be treated at a predetermined pH so as to absorb and thus remove anions in the water to be treated, and a step of bringing the absorbent, which absorbed anions, into contact with solution having pH, which is different from the aforementioned predetermined pH, so as to desorb anions from the absorbent.
Abstract:
An adsorbent to be packed into a canister, at least containing activated carbon and an additive material that has a higher heat capacity than the activated carbon. The adsorbent has first pores derived from the activated carbon that are less than 100 nm and second pores derived from meltable cores that are 1 μm or more. The adsorbent is in the form of a hollow molded body having an outer diameter of more than 6 mm and not more than 50 mm and including a cylindrical wall and honeycomb walls each having a thickness of not less than 0.2 mm and not more than 1 mm. The adsorbent has a volumetric specific heat of 0.08 kcal/L·° C. or more. The ratio of the volume of the second pores to the volume of the first pores is not less than 10% and not more than 200%.