Abstract:
A steel blank is placed in intimate contact along a joint interface with a blank of another metal, and the two blanks are welded along and throughout the interface by a superhigh-output electron beam thereby to obtain a metallurgical welded joint and to form an integral blank which is rolled or otherwise formed into a clad steel article.
Abstract:
Upper and lower shell members of aluminum-plated steel panels have respective flanges overlapping each other and welded to each other by a laser beam, thereby forming a fuel tank. One of the flanges has a stepped region spaced from the other of the flanges, thereby defining a gap between the stepped region and the other flange. The laser beam is applied to the flanges closely to the gap for discharging unwanted components such as aluminum from a welded area of the flanges into the gap. Therefore, the amount of aluminum contained in the welded area is reduced to increase the bonding strength of the welded area.
Abstract:
A laser welding method which provides improved welding quality, allowing excellent products to be produced. The mixture of inactive gas or nitrogen gas and 5% to 35% of oxygen gas in terms of volume ratio and that of inactive gas or nitrogen gas and not less than 25% of dried air in terms of volume ratio are employed as an assist gas in the lap and butt weldings and filler wire-inserted welding of metal materials filmed with low melting point substance.
Abstract:
A method of welding at least two sheets using a high energy density radiation beam that preferably is a laser beam or an electron beam for producing a welded lap joint that is substantially completely fused across the width of overlap of the sheets preferably for enabling shaping or forming to be performed such that at least one of the sheets and at least portion of a weld line defined between the overlapped sheets are bent or three dimensionally contoured. In practicing a preferred embodiment of the method, the sheets are overlapped and welded by directing at least one radiation beam toward the overlapped sheets having sufficient power density and for a sufficient amount of time to weld the sheets such that they are substantially completely fused from front to back in the overlap region. As a result, the sheets form a blank that preferably is formed or shaped, such as by shaping, deep drawing, hydro-forming or roll forming, such that at least one of the sheets and a portion of the weld line of the sheets are bent or three dimensionally contoured. After shaping or forming, the sheets preferably form at least part of an article of manufacture.
Abstract:
The first and second weld areas of respective first and second metallic workpieces of aluminum or aluminum alloy are held in abutment against each other with a surface of the second metallic workpiece being positioned on a positioning guide of the first metallic workpiece. A recess is defined between the positioning guide and the second metallic workpiece. A high-density energy beam such as a laser beam is applied to the first and second weld areas thereby to develop a molten pool therein that grows toward the positioning guide until metallic oxide films formed on the first and second metallic workpieces are forced into the recess by the molten pool. As no metallic oxide films are present in a weld joint between the first and second metallic workpieces, the resultant welded structure is of a high mechanical strength.
Abstract:
A laser system and processing method exploits the absorption contrast between the materials from which a film and an underlying substrate (26) are made to effectively remove the film from the substrate. Laser output in a wavelength range of 1.2 to 3 .mu.m optimizes the absorption contrast between many resistive or conductive film materials (e.g., metals, metal alloys, polysilicon, polycides, or disilicides) and integrated circuit substrates (e.g., silicon, gallium arsenide, or other semi-conductors) and permits the use of laser output in a wider range of energy or power levels and pulse widths, without risking damage to the substrates or adjacent circuit structures. Existing film processing laser systems can be readily modified to operate in the 1.2 to 3 .mu.m range. The laser system and processing method also exploit a wavelength range in which devices, including any semiconductor material-based devices affected by conventional laser wavelengths and devices having light-sensitive or photo-electronic portions integrated into their circuits, can be effectively functionally trimmed without inducing malfunctions or function shifts in the processed devices, thus allowing faster functional laser processing, easing geometric restrictions on circuit design, and facilitating production of denser and smaller devices.
Abstract:
A laser system and processing method exploits the absorption contrast between the materials from which a link (12) and an underlying substrate (22) are made to effectively remove the link from the substrate. Laser output in a wavelength range of 1.2 to 3 .mu.m (30) optimizes the absorption contrast between many materials (e.g., metals, polysilicon, polycides, or disilicides) and integrated circuit substrates (e.g., silicon, gallium arsenide, or other semiconductors) and permits the use of laser output in a wider range of energy or power levels, pulse widths, and spot sizes without risking damage to the substrates or adjacent circuit structures. Existing link processing laser systems can be readily modified to operate in the 1.2 to 3 .mu.m range.
Abstract:
A flangeless fuel tank formed of two interfitted cup-shaped tank halves welded along the overlapping portion of the tank halves. Locating protrusions stamped into each tank half provide registration of the halves prior to welding. Spacing dimples stamped into at least one of the fuel tank halves provide a vent space for escaping gases from vaporized coatings.
Abstract:
An apparatus for inking or printing on the surface of an item, such as a badge or emblem, is described. The apparatus incorporates a number of sub-systems including: an apparatus for holding and positioning blank screen material; a laser ablation system for producing the desired hole pattern in the blank screen material to form screens; a print/ink station; a table assembly for supporting a plurality of labels or emblems and moving such labels or emblems sequentially to the print station; and an apparatus for moving the screens to the print/ink station. The apparatus also includes heater for drying the ink after the printing/inking step is completed. The apparatus for producing the patterns includes a laser, mirrors for moving the beam in the x and y directions, and optics for focusing the beam on the blank screen material. The inking station includes an ink tray, a reciprocating squeegee and blades for wiping ink from the leading edges of the squeegee after the squeegee passes over the pattern.
Abstract:
A laser system and processing method exploits the absorption contrast between the materials from which a link (12) and an underlying substrate (22) are made to effectively remove the link from the substrate. Laser output in a wavelength range of 1.2 to 2.0 .mu.m (30) optimizes the absorption contrast between many high conductivity materials (e.g., metals) and silicon substrates and permits the use of laser output in a wider range of energy or power levels, pulse widths, without risking damage to the silicon substrates or adjacent circuit structures. Existing link processing laser systems can be readily modified to operate in the 1.2 to 3.0 .mu.m range.