Abstract:
The invention includes methods of forming microstructure devices. In an exemplary method, a substrate is provided which includes a first material and a second material. At least one of the first and second materials is exposed to vapor-phase alkylsilane-containing molecules to form a coating over the at least one of the first and second materials.
Abstract:
The present invention pertains to a method of fabricating a surface within a MEM which is free moving in response to stimulation. The free moving surface is fabricated in a series of steps which includes a release method, where release is accomplished by a plasmaless etching of a sacrificial layer material. An etch step is followed by a cleaning step in which by-products from the etch step are removed along with other contaminants which may lead to stiction. There are a series of etch and then clean steps so that a number of nullcyclesnull of these steps are performed. Between each etch step and each clean step, the process chamber pressure is typically abruptly lowered, to create turbulence and aid in the removal of particulates which are evacuated from the structure surface and the process chamber by the pumping action during lowering of the chamber pressure. The final etch/clean cycle may be followed by a surface passivation step in which cleaned surfaces are passivated and/or coated.
Abstract:
A method of coating one or more surfaces of a micromechanical device. The coating is applied as a material dissolved in CO2. The CO2 is used a carrier solvent, with the coating being applied as a spray or in liquid form, to form a film on the surface. The CO2 may be used in supercritical form to dissolve the material.
Abstract:
A method for producing a micromechanical structure, and a micromechanical structure having a movable structure and a stationary structure made of silicon. In the method for producing the micromechanical structure, in one process step, a superficial metal-silicide layer is produced in the movable structure and/or the stationary structure.
Abstract:
A method and apparatus for delivering a fine mist of a lubricant to a micromechanical device. A mixture 402 of a lubricant and a diluent carrier fluid is held in a supply reservoir 404. The mixture is forced through a nebulizer tip 406 to produce a fine aerosol. A particle selector 408 removes large droplets from the aerosol as the aerosol passes. The aerosol travels a distance through a delivery conduit 410 while the diluent carrier fluid evaporates from the nebulized droplets. The evaporation removes the vast majority of the diluent carrier fluid from the droplets, greatly reducing the size of the lubricant droplets. The evaporated aerosol enters a deposition chamber 412 and is deposited on a micromechanical device 414. The micromechanical devices may be lubricated in wafer form, in which case the lubricant aerosol will lubricate an entire wafer of micromechanical devices at one time. One embodiment produces an aerosol having a mean droplet size of less than 10 microns. Evaporation of the diluent carrier fluid reduces this droplet size to 10-500 nm by the time the lubricant is deposited on the micromechanical devices. The preceding abstract is submitted with the understanding that it only will be used to assist in determining, from a cursory inspection, the nature and gist of the technical disclosure as described in 37 C.F.R. §1.72(b). In no case should this abstract be used for interpreting the scope of any patent claims.
Abstract:
This invention discloses a process for forming durable anti-stiction surfaces on micromachined structures while they are still in wafer form (i.e., before they are separated into discrete devices for assembly into packages). This process involves the vapor deposition of a material to create a low stiction surface. It also discloses chemicals which are effective in imparting an anti-stiction property to the chip. These include polyphenylsiloxanes, silanol terminated phenylsiloxanes and similar materials.
Abstract:
In a method for manufacturing a semiconductor acceleration sensor, a movable portion including a mass portion and movable electrodes is formed in a single crystal silicon thin film provided on a silicon wafer through an insulation film by etching both the single crystal silicon thin film and the silicon wafer. In this case, the movable portion is finally defined at a movable portion defining step that is carried out in a vapor phase atmosphere. Accordingly, the movable portion is prevented from sticking to other regions due to etchant during the manufacture thereof.
Abstract:
An electronic device (10) such as that of the micromechanical type having a time-released source of a passivant (20). This source (20) is preferably comprised of an impregnated molecular sieve/binder combination, preferably being a polymer. The passivant may be PFDA. The time-released passivant source continuously over the life of the device reduces any tendency of engaged or contacting elements to stick, adhere, or otherwise resist separation. The present invention finds particular use in spatial light modulators of the DMD type. The molecular sieve/binder can also include getter/desiccant source, such as a non-evaporable getter to remove moisture from the hermetically sealed electronic device.
Abstract:
A monolithic capacitance-type microstructure includes a semiconductor substrate, a plurality of posts extending from the surface of the substrate, a bridge suspended from the posts, and an electrically-conductive, substantially stationary element anchored to the substrate. The bridge includes an element that is laterally movable with respect to the surface of the substrate. The substantially stationary element is positioned relative to the laterally movable element such that the laterally movable element and the substantially stationary element form a capacitor. Circuitry may be disposed on the substrate and operationally coupled to the movable element and the substantially stationary element for processing a signal based on a relative positioning of the movable element and the substantially stationary element. A method for fabricating the microstructure and the circuitry is disclosed.
Abstract:
It is possible to use an oriented monolayer to limit the Van der Waals forces between two elements by passivation. An oriented monolayer (34) is formed on a surface of a micromechanical device. When the surface comes in contact with another surface, the oriented monolayer decreases the Van der Waals forces to reduce the attraction between the surfaces.