Abstract:
A mixed quartz powder contains quartz powder and two or more types of doping element in an amount of from 0.1 to 20 mass %. The aforementioned doped elements include a first dope element selected from the group consisting of N, C and F, and a second dope element selected from the group consisting of Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, the lanthanides and the actinides. The “quartz powder” is a powder of crystalline quartz or it is a powder of glassy SiO2 particles. It is made form natural occurring quartz or it is fabricated synthetically. The “quartz powder” may be doped. The compounding ratio of the total amount (M1) of the aforementioned first elements and the total amount (M2) of the aforementioned second elements as the ratio of the number of atoms (M1)/(M2) is preferably from 0.1 to 20. Al as well as the aforementioned doped elements is preferably included in a mixed quartz powder of this invention.
Abstract:
The invention provides a process for producing a synthetic quartz glass, comprising: (a) depositing fine quartz glass particles synthesized by flame hydrolysis of a glass-forming material, on a substrate, to form a porous quartz glass base; (b) presintering the porous quartz glass base; (c) heat-treating the presintered porous quartz glass base by holding it under vacuum at a temperature in the range of from 1,100° C. to below the vitrification temperature for a certain time period; and (d) heating the thus heat-treated porous quartz glass base to a temperature not lower than the vitrification temperature to obtain a synthetic quartz glass. According to the process for synthetic quartz glass production of the invention, a synthetic quartz glass having a reduced OH group amount and a uniform OH group concentration can be obtained. From the synthetic quartz glass, an optical member having excellent optical properties can be obtained.
Abstract:
Methods, apparatus and precursors for producing substantially water-free silica soot, preforms and glass. The methods and apparatus make substantially water-free fused silica preforms or glass by removing water as a reaction product, removing water from the atmosphere, removing water from the transport process, or combinations thereof. In a first embodiment, substantially water-free soot, preforms or glass are achieved by using a hydrogen-free fuel, such as carbon monoxide, in the deposition process. In another embodiment, a soot producing burner has parameters that enable operation on a substantially hydrogen-free fuel. End burners, which minimize water production, are also described. Such water-free methods are useful in depositing fluorine-doped soot because of the low water present and the efficiency in which fluorine is incorporated. In another embodiment, glassy barrier layer methods and apparatus are described for minimizing dopant migration, especially fluorine. Laser and induction methods and apparatus for forming the barrier layer are depicted. A chlorine, fluorine and silica precursor, such as chlorofluorosilane, may be utilized to form fluorinated soot. Other methods and apparatus are directed to combinations of conventional and substantially water-free processes. One embodiment is directed to combustion enhancing additives for addition to the substantially hydrogen-free fuels. The methods and apparatus in accordance with the invention are particularly useful for producing photomask substrates and optical fiber preforms.
Abstract:
Disclosed are high purity synthetic silica material having an internal transmission at 193 nm of at least 99.65%/cm and method of preparing such material. The material is also featured by a high compositional homogeneity in a plane transverse to the intended optical axis. The soot-to-glass process for making the material includes a step of consolidating the soot preform in the presence of H2O and/or O2.
Abstract translation:公开了具有193nm以上的内透射率为至少99.65%/ cm 3的高纯度合成二氧化硅材料及其制备方法。 该材料的特征还在于横向于预期光轴的平面中具有高的组成均匀性。 用于制造材料的烟灰对玻璃工艺包括在H 2 O 2和/或O 2 2的存在下固化烟灰预制件的步骤。
Abstract:
It is an object of the present invention to provide synthetic quartz glass optical materials suitable for use in YAG of higher order harmonics. The damage threshold value in J/cm2 (energy density at which cracks occur generated by irradiation) is to be considered when synthetic quartz glass material is irradiated with YAG laser of third or higher order harmonics with single pulses or continuously. Regarding a synthetic quartz glass optical material in use for the optical parts constituting the prism and lens used in a laser beam machine, this invention provides a synthetic quartz glass material suitably used for the YAG laser with the third or higher order of harmonic, choosing the following conditions: OH group concentration is in the range of ≧1 to ≦300 ppm; contained hydrogen molecule concentration is in the range of ≧2×1018 to ≧2×1019 molecules/cm3; transmittance of ultraviolet rays at 245 nm of wavelength is 99.9% or more; and the fictive temperature is in the range of ≧880 to ≦990° C.
Abstract:
A process for producing fluorine-containing glass. An SiO2 soot is synthesized by hydrolyzing SiCl4. The soot is heated in a chlorine-compound-free atmosphere containing a fluorine compound gas to form a fluorine-containing silica glass. The glass contains not more than 10 ppm OH group, not more than 10 ppm Cl, and not less than 1,000 ppm F. The concentration ratio of F/Cl is 10,000 or more.
Abstract:
High purity silicon oxyfluoride glass suitable for use as a photomask substrates for photolithography applications in the VUV wavelength region below 190 nm is disclosed with the silicon oxyfluoride glass having a preferred fluorine content
Abstract translation:公开了具有优选氟含量<0.5重量%的氟氧化硅玻璃,适合用作光刻应用中的低于190nm的VUV波长区域的光掩模基板的高纯度氟氧化硅玻璃。 本发明的氟氧化硅玻璃在157nm波长下是透射的,使其特别适用于157nm波长区域的光掩模衬底。 本发明的光掩模基材是“真空”的氟氧化硅玻璃,其在真空紫外(VUV)波长区域中表现出非常高的透射率,同时保持通常与高纯度熔融石英相关的优异的热和物理性能。 除了含氟并且具有很少或不具有OH含量之外,本发明的适合用作157nm的光掩模衬底的氟氧化硅玻璃的特征还在于具有小于1×10 17分子/ cm 3的分子氢和低 氯水平。
Abstract:
An optical member made of silica glass manufactured by the direct method where a material gas comprising an organosilicon compound is allowed to react in an oxidizing flame, said optical member having a 2×1014 molecules/cm3 or less concentration of formyl radical generated by X-ray irradiation whose dose is 0.01 Mrad or more and 1 Mrad or less.
Abstract translation:通过直接法制造的由石英玻璃制成的光学构件,其中包含有机硅化合物的材料气体在氧化火焰中反应,所述光学构件具有2×10 14分子/ cm 3或更低浓度的甲酰基 其剂量为0.01Mrad以上且1Mrad以下的X射线照射产生。
Abstract:
The present invention provides a method for manufacturing an optical element to be used for an optical system and an optical instrument using the optical system, and a method for manufacturing a device using the optical instrument, wherein the optical element is manufactured by the steps including the steps for processing a high purity silica glass by lithography, and the hydrogen molecule content is adjusted after manufacturing the optical element.
Abstract:
A silica optical fiber is provided, which contains a pure-silica core and a cladding layer formed on the pure-silica core, wherein the pure-silica core contains a C element and has a content of elements belonging to the third period-the seventh period of the periodic table, except Si element that constitutes the quartz structure, of not more than 100 ppm. The present invention can provide a silica optical fiber superior in the resistance to high energy electromagnetic waves such as UV light and &ggr;-rays.