Abstract:
A target air amount for achieving a requested torque is back-calculated from the requested torque using a parameter that provides a conversion efficiency of an air amount to torque. The value of the parameter gradually changes to lower the conversion efficiency as the requested torque decreases from a second reference value towards a first reference value. The first reference value is calculated based on the engine speed. The second reference value is calculated based on an air amount with which the first reference value is achieved under a second air-fuel ratio, and a first air-fuel ratio. The target air-fuel ratio is set to the first air-fuel ratio when the requested torque is greater than the first reference value, and is switched from the first air-fuel ratio to the second air-fuel ratio when the requested torque decreases to a value equal to or less than the first reference value.
Abstract:
Methods are provided for performing diagnostic routines in a hybrid vehicle. In one example approach, a method for operating a hybrid vehicle comprises inhibiting engine shutdown and enabling deceleration fuel shut off to perform a monitoring test while a vehicle speed is above a threshold speed.
Abstract:
A system and method are disclosed for regenerating an oxidation catalyst used in an aftertreatment system of a multifuel internal combustion engine. According to at least one aspect of the present disclosure, recirculated exhaust gas is employed to enable recovery periods in which the engine generates oxygen-depleted exhaust to desulfate and deoxidize the oxidation catalyst. In certain embodiments, the system may include an exhaust gas recirculation system with a cooler and regulation valve to introduce exhaust gas into the engine.
Abstract:
Methods and systems are provided for reducing pre-ignition incidence in a variable displacement engine during reactivation from a VDE mode. During conditions when one or more deactivated cylinders are reactivated to elevated engine loads, the reactivated cylinder(s) may be temporarily and preemptively enriched to reduce the possibility of cylinder pre-ignition. The preemptive enrichment is learned and further adjusted in a closed loop fashion.
Abstract:
Systems and methods for increasing EGR gas temperature for an engine that includes at least one dedicated EGR cylinder. The dedicated EGR cylinder may provide exhaust gas to engine cylinders and the exhaust gas does not include exhaust gases from cylinders other than the dedicated EGR cylinder. The dedicated EGR cylinder may allow the engine to operate at higher EGR dilution levels.
Abstract:
A control device of an internal combustion engine according to the present invention executes air-fuel ratio control based on an output of an air-fuel ratio sensor provided at an upstream side of a catalyst, with correction based on an output of an oxygen sensor at a downstream side of the catalyst. When it is determined that a degree of an output tendency in a predetermined lean region is not less than a predetermined lean degree, and that a degree of an output tendency in a predetermined rich region is less than a predetermined rich degree based on lean tendency and rich tendency values representing output tendencies of the oxygen sensor, a limit is set to the correction in a direction to more suppress enriching of an air-fuel ratio as a degree is larger in which the output of the oxygen sensor is shifted to a lean side.
Abstract:
When engine is in the lean operation, and a WGV is fully closed, a boundary between a stoichiometric region and a lean region is corrected by learning using a turbocharging pressure obtained from a turbocharging pressure sensor. When the engine is in the lean operation, and the WGV is fully closed, the turbocharging pressure obtained from the turbocharging pressure sensor is equal to the actual maximum value of the engine torque output when a throttle valve is fully opened and the engine is in the lean operation, that is, the turbocharging pressure required to achieve the torque on the actual boundary. Therefore, the boundary can be brought close to the actual boundary by learning using the turbocharging pressure obtained from the turbocharging pressure sensor when the engine is in the lean operation and the WGV is fully closed.
Abstract:
A system according to the principles of the present disclosure includes a storage estimation module and an air/fuel ratio control module. The storage estimation module estimates a first amount of ammonia stored in a first selective catalytic reduction (SCR) catalyst and estimates a second amount of ammonia stored in a second SCR catalyst. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the first amount, the second amount, and a temperature of a substrate disposed in the second SCR catalyst.
Abstract:
A control unit is provided for fuel supply regulation during a cold-running phase of an internal combustion engine, that includes, but is not limited to an input port for inputting a combustion signal about the presence of a rich or lean combustion of a fuel mixture in the internal combustion engine, a P-element for providing a P-manipulated variable, which sets a fuel reduction upon the presence of a rich combustion and sets a fuel increase upon the presence of a lean combustion, an I-element for providing an I-manipulated variable, which sets a fuel increase, and an output port for controlling a fuel supply, the P-manipulated variable and the I-manipulated variable substantially offsetting one another during the cold-running phase upon the presence of a rich combustion in the stationary state.
Abstract:
A fuel injection apparatus includes an injector that injects fuel into a combustion chamber or an intake port of an internal combustion engine; an injection amount controller that controls a fuel injection amount of the injector and corrects the fuel injection amount to increase when the internal combustion engine is in a given cold state; an air-fuel ratio detector that detects an air-fuel ratio of the internal combustion engine; and an air-fuel ratio rich fault determiner that determines an air-fuel ratio rich fault when the air-fuel ratio exists on a rich side than a predetermined determination value. The air-fuel ratio rich fault determiner shifts the predetermined determination value toward the rich side in accordance with the increasing correction of the fuel injection amount so as to correct the predetermined determination value.