Abstract:
Methods and systems for sensor calibration and sensor glucose (SG) fusion are used advantageously to improve the accuracy and reliability of orthogonally redundant glucose sensor devices, which may include optical and electrochemical glucose sensors. Calibration for both sensors may be achieved via fixed-offset and/or dynamic regression methodologies, depending, e.g., on sensor stability and Isig-Ratio pair correlation. For SG fusion, respective integrity checks may be performed for SG values from the optical and electrochemical sensors, and the SG values calibrated if the integrity checks are passed. Integrity checks may include checking for sensitivity loss, noise, and drift. If the integrity checks are failed, in-line sensor mapping between the electrochemical and optical sensors may be performed prior to calibration. The electrochemical and optical SG values may be weighted (as a function of the respective sensor's overall reliability index (RI)) and the weighted SGs combined to obtain a single, fused SG value.
Abstract:
An apparatus and method are provided for digitally controlling an oxygen sensor. The apparatus comprises a computer and digital circuitry coupled to the oxygen sensor to convey information between the oxygen sensor and the computer. The oxygen sensor includes a pump cell and at least one Nernst cell configured to indicate the difference in oxygen content in a test medium relative to a reference medium. A pump control circuit operates the pump cell according to signals received from the computer based on output signals from the Nernst cell. A reference voltage circuit enables the computer to determine impedances of the oxygen sensor as a function of sensor temperature and pressure. A Nernst read circuit transmits output signals from the oxygen sensor digitally to the computer. Digital signals received by the computer are compared with stored reference information so as to determine the oxygen content of the test medium.
Abstract:
An array of resonant sensors self-corrects measured values for the effects of environmental conditions, such as operating temperature, pressure or humidity. The resonant sensors have varied frequency responses to N environmental parameters and M chemical parameters. Each of the sensors has a different, non-zero frequency response to at least two of the parameters. The device also comprises at least one detector for detecting frequency responses of the resonant sensors. Individual parameter values are determined for each of the N environmental parameters and M chemical parameters according to the detected frequency responses and a system of equations using calibration terms that relate the frequency responses to the individual parameter values.
Abstract:
Described are systems and methods for compensating long term sensitivity drift of catalytic type electrochemical gas sensors used in systems for delivering therapeutic nitric oxide (NO) gas to a patient by compensating for drift that may be specific to the sensors atypical use in systems for delivering therapeutic nitric oxide gas to a patient. In at least some instances, the long term sensitivity drift of catalytic type electrochemical gas sensors can be addressed using calibration schedules, which can factor in the absolute change in set dose of NO being delivered to the patient that can drive one or more baseline calibrations. The calibration schedules can be used reduce the amount of times the sensor goes offline. Systems and methods described may factor in in actions occurring at the delivery system and/or aspects of the surrounding environment, prior to performing a baseline calibration, and may postpone the calibration and/or rejected using the sensor's output for the calibration.
Abstract:
A method for diagnosing disconnection of an oxygen sensor includes measuring, by a controller, a voltage supplied to an oxygen sensor through a voltage divider; measuring a voltage of a reference cell of the oxygen sensor; determining whether the voltage supplied to the oxygen sensor and the voltage of the reference cell fall within a reference range from preset reference values, respectively; and determining that a ground wire of the oxygen sensor is disconnected, when the voltage of the oxygen sensor or the voltage of the reference cell deviates from the reference range.
Abstract:
The present invention provides a test strip for measuring a signal of interest in a biological fluid when the test strip is mated to an appropriate test meter, wherein the test strip and the test meter include structures to verify the integrity of the test strip traces, to measure the parasitic resistance of the test strip traces, and to provide compensation in the voltage applied to the test strip to account for parasitic resistive losses in the test strip traces.
Abstract:
A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
Abstract:
An electrolytic gas sensor which is sensitive to a specific gas and has a working, reference and counter electrode is functionally monitored. A differential voltage between the reference and working electrodes is amplified and the potential of the counter electrode is regulated to minimize the differential voltage. Then a measured current flowing into the counter electrode approximately proportionally to the gas concentration of the gas to be detected arises. Independently of the determination of the gas concentration, a working, counter and reference voltage which is present at the three electrodes in each case is captured and monitored for an impermissible deviation. In an impermissible case an assigned error message is then output. Online monitoring of the gas sensor is thus possible and no interruption of the measurement operation for test purposes and additional components are required.
Abstract:
A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
Abstract:
A sensor element of an A/F sensor AS has a solid electrolyte layer, a first electrode arranged on one side of the solid electrolyte layer so as to be exposed to the exhaust gas of an internal combustion engine, and a second electrode arranged on the other side of the solid electrolyte layer so as to face an atmospheric air chamber. The sensor element generates a sensor output according to the oxygen concentration in the exhaust gas. A microcomputer supplies oxygen to the first electrode side from the second electrode side via the solid electrolyte layer by applying a predetermined voltage between the pair of electrodes and of the sensor element. Moreover, the microcomputer determines a crack abnormality of the solid electrolyte layer based on electric current between the pair of electrodes which is generated with start of the oxygen supply.