摘要:
An energy storage device includes an electrode assembly, a case, a terminal part, and a current collector, wherein the terminal part has: an external terminal having at least a part exposed to outside of the case; a conduction member configured to make the external terminal and the current collector conductive; a decoupling mechanism configured to decouple the conduction member, or hinder a conduction state of the conduction member; and an auxiliary terminal disposed spaced from the external terminal, and having at least a part exposed to the outside of the case, the auxiliary terminal being electrically connected to the current collector.
摘要:
An electrochemical device including a housing and a stack of electrochemical cells in the housing. Each electrochemical cell includes an anode electrode, a cathode electrode, a separator located between the anode electrode and the cathode electrode and an electrolyte. The electrochemical device also includes a current collector located between adjacent electrochemical cells, an anode bus operatively connected to the anodes of the electrochemical cells in the stack and a cathode bus operatively connected to the cathodes of the electrochemical cells in the stack. The housing, the anode electrode, the cathode electrode, the separator, the anode bus and the cathode bus are non-metallic.
摘要:
An energy storage device comprises a capacitor having a dielectric between opposite electrodes and a nonconductive coating between at least one electrode and the dielectric. The nonconductive coating allows for much higher voltages to be employed than in traditional EDLCs, which significantly increases energy stored in the capacitor. Viscosity of the dielectric material may be increased or decreased in a controlled manner, such as in response to an applied external stimulus, to control discharge and storage for extended periods of time.
摘要:
An electrochemical cell comprising a hermetic glass-to-metal seal utilizing a gold coated terminal lead is described. The surface of the terminal lead is directly coated with a layer of gold utilizing an electroplating method. The improved process improves manufacturing efficiencies and reliability of the electrochemical cell.
摘要:
A lead 3 of an electrochemical device includes a lead body 3A containing Al, and a bent metallic thin film 3a provided to a tip part of the lead body 3A. The metallic thin film 3a includes a thin film body 3a1 containing Ni, and a plating layer 3a2 containing Sn and covering at least an outer surface of the bent thin film body 3a1. A specific area of an inner surface of the bent thin film body 3a1 and a surface of the lead body 3A are welded in a predetermined area without the plating layer 3a2 being disposed there between.
摘要:
Disclosed herein is a super capacitor including: an electrode assembly; a pouch cell enclosing an outer peripheral surface of the electrode assembly; a resin case molding the pouch cell; and a lead wire of which one side is electrically connected to the electrode assembly and the other side exposed to the outside of the resin case is bonded to an outer peripheral surface of the resin case. According to the present invention, the super capacitor may have durability against external impact, and cycle life characteristics of the super capacitor may be significantly improved.
摘要:
An electrode of an energy storage device with less deterioration by charge and discharge can be manufactured. In addition, an energy storage device which has large capacity and high endurance can be manufactured. A manufacturing method of an electrode of an energy storage device is provided in which a high-wettability regions and a low-wettability region are formed at a surface of a current collector, a composition containing silicon, germanium, or tin is discharged to the high-wettability regions and then baked to form separate active materials over a surface of the current collector. Thus, an electrode of an energy storage device with less deterioration due to charge and discharge can be manufactured.
摘要:
An energy storage device includes an electrode unit in which a cathode having a cathode lead, an anode having an anode lead, and a separator located between the cathode and the anode to separate the cathode and the anode from each other are rolled together; a housing receiving the electrode unit; an electrolyte filled in the housing; an inner terminal arranged in the housing to face the electrode unit; and an outer terminal connected to the inner terminal. A groove is formed in a side of the inner terminal, and a side protrusion is formed on an inner wall of the housing at a location corresponding to the groove.
摘要:
The present application provides an electric double-layer capacitor capable of reducing an internal resistance without exerting a large stress on a positive electrode body, a negative electrode body, and separators. The electric double-layer capacitor according to the present invention is obtained by housing a capacitor element impregnated with an electrolytic solution in a case. The capacitor element is obtained by stacking and winding a positive electrode body, separators, and a negative electrode body. The positive electrode body has positive electrode current collector tabs fixed on positive electrode current collectors. The negative electrode body has negative electrode current collector tabs fixed on negative electrode current collectors. The paired positive electrode current collector tab are displaced from each other and the paired negative electrode tabs are displaced from each other in a state where the positive electrode body and the negative electrode body are not wound.
摘要:
An energy storage device package is provided. The energy storage device package includes a bottom cover and a top cover connected to form a hollow chamber to accumulate an electrolyte, a first electrode and a second electrode formed on the top cover and which stretch from the top cover to the hollow chamber to contact the electrolyte, and a safety valve. The first electrode includes an opening and an exhaust channel that extends between the hollow chamber and the opening. When a gas pressure in the hollow chamber is smaller than or equal to a threshold value, the safety valve in the first electrode blocks the exhaust channel. When the gas pressure is larger than the threshold value, the gas pushes to open the safety valve and flows out from the hollow chamber through the exhaust channel and the opening.