Abstract:
A nano-patterned system comprises a vacuum chamber, a sample stage and a magnetic-field applying device. The magnetic-field applying device comprises a power supply, magnetic poles, and a magnetic-field generation device having a magnetic conductive soft iron core and a coil connected to the power supply and wound on the soft iron core to generate a magnetic field. The soft iron core is a semi-closed frame structure and the magnetic poles are respectively disposed at the two ends of the semi-closed frame structure. The sample stage is inside the vacuum chamber. The magnetic poles are opposite one another inside the vacuum chamber with respect to the sample stage. The coil and soft iron core are outside the vacuum chamber. The soft iron core leads the magnetic field generated by the coil into the vacuum chamber. The magnetic poles locate a sample on the sample stage and apply a local magnetic field.
Abstract:
A plasma producing apparatus for plasma processing a substrate Includes a chamber having an interior surface, a plasma production device for producing an inductively coupled plasma within the chamber, a substrate support for supporting the substrate during plasma processing, and a Faraday shield disposed within the chamber for shielding at least part of the interior surface from material removed from the substrate by the plasma processing. The plasma production device includes an antenna and a RF power supply for supplying RF power to the antenna with a polarity which is alternated at a frequency of less than or equal to 1000 Hz.
Abstract:
The invention relates to a charged-particle multi-beamlet lithography system for transferring a pattern onto the surface of a target. The system includes a beam generator, a beamlet blanker array, a shielding structure and a projection system. The beam generator is arranged for generating a plurality of charged particle beamlets. The beamlet blanker array is arranged for patterning the beamlets. The beamlet blanker array comprises a plurality of modulators and a plurality of light sensitive elements. The light sensitive elements are arranged to receive pattern data carrying light beams and are electrically connected to one or more modulators. The shielding structure is of an electrically conductive material for substantially shielding electric fields generated in proximity of the light sensitive elements from the modulators. The shielding structure is arranged to be set at a predetermined potential. The projection system is arranged for projecting the patterned beamlets onto the target surface.
Abstract:
The invention relates to a charged particle lithography system for patterning a target. The lithography system has a beam generator for generating a plurality of charged particle beamlets, a beam stop array with a beam-blocking surface provided with an array of apertures; and a modulation device for modulating the beamlets by deflection. The modulation device has a substrate provided with a plurality of modulators arranged in arrays, each modulator being provided with electrodes extending on opposing sides of a corresponding aperture. The modulators are arranged in groups for directing a group of beamlets towards a single aperture in the beam stop array. Individual modulators within each group have an orientation such that a passing beamlet, if blocking is desired, is directed to a blocking position onto the beam stop array. Beamlet blocking positions for different beamlets are substantially homogeneously spread around the corresponding single aperture in the beam stop array.
Abstract:
The present invention provides means and corresponding embodiments to control charge-up in an electron beam apparatus, which can eliminate the positive charges soon after being generated on the sample surface within a frame cycle of imaging scanning. The means are to let some or all of secondary electrons emitted from the sample surface return back to neutralize positive charges built up thereon so as to reach a charge balance within a limited time period. The embodiments use control electrodes to generate retarding fields to reflect some of secondary electrons with low kinetic energies back to the sample surface.
Abstract:
A charged particle lithography system for transferring a pattern onto the surface of a target. The system comprises a beam generator for generating a plurality of charged particle beamlets, the plurality of beamlets defining a column, a beam stop array having a surface for blocking beamlets from reaching the target surface and an array of apertures in the surface for allowing the beamlets to reach the target surface, and a modulation device for modulating the beamlets to prevent one or more of the beamlets from reaching the target surface or allow one or more of the beamlets to reach the target surface, by deflecting or not deflecting the beamlets so that the beamlets are blocked or not blocked by the beam stop array. The modulation device comprises a plurality of apertures arranged in arrays for letting the beamlets pass through the modulation device, a plurality of modulators arranged in arrays, each modulator provided with electrodes extending on opposing sides of an aperture for generating a voltage difference across the aperture, and a plurality of light sensitive elements arranged in arrays, for receiving modulated light beams and converting the light beams into electric signals for actuating the modulators, wherein the light sensitive elements are located within the column, wherein the modulation device is subdivided into a plurality of alternating beam areas and non-beam areas, the arrays of modulators are located in the beam areas, and the arrays of light sensitive elements are located in the non-beam areas and are in communication with the modulators in an adjacent beam area.
Abstract:
A method and system for inspecting an inspected object. The system includes: a detector adapted to detect charged particles scattered from a sample; a magnetic lens adapted to generate a magnetic field such as to direct a charge particle beam towards a sample and an first electrode positioned very close to an inspected object, wherein the first electrode comprises a very thin portion that defines a narrow aperture through which the charged particle beam can propagate.
Abstract:
Methods and apparatus to facilitate the measurement of the amount of scattered electrons collected by an anti-fogging baffle arrangement are provided. For some embodiments, by affixing a lead to an electrically isolated (floating) portion of the baffle arrangement, the amount of scattered electrons collected thereby may be read out, for example, as a current signal. Thus, for such embodiments, the baffle arrangement may double as a detector, allowing an image of surface (e.g., a mask or substrate surface) to be generated.
Abstract:
A method and system for inspecting an inspected object. The system includes: a detector adapted to detect charged particles scattered from a sample; a magnetic lens adapted to generate a magnetic field such as to direct a charge particle beam towards a sample and an first electrode positioned very close to an inspected object, wherein the first electrode comprises a very thin portion that defines a narrow aperture through which the charged particle beam can propagate.
Abstract:
A photo-cathode image projection apparatus includes a light source for producing an optical beam, a photoelectron mask disposed so as to be irradiated by the optical beam and a photoelectron mask patterned according to a desired pattern with a material that emits photoelectrons in response to irradiation by an optical beam. The apparatus also includes a focusing device for focusing the emitted photoelectrons to form a photoelectron beam focused on the object, an acceleration electrode disposed along the path of the photoelectron beam for accelerating the photoelectrons in the beam, an elongated passage defined in the acceleration electrode to permit passage of a part of the photoelectron beam, and a stage disposed for supporting the object in a position such that the focused photoelectron beam is focused on the object. Also included is a voltage source for applying an acceleration voltage between the photoelectron mask and the acceleration electrode. The acceleration electrode is held at an electrical potential level that is identical to the electrical potential level of the stage, so that the object supported on the stage is electrically shielded from the photoelectron mask by the acceleration electrode.