摘要:
The present invention relates to a process and system for complete conversion of crude oils by integrating Desalter unit, Atmospheric and vacuum column, high severity FCC process, Naphtha cracking process, residue slurry hydrocracking process, Delayed coking process, Selective mild hydrocracking aromatic production unit, Dehydrogenation units, Aromatic/olefin recovery section, gasifier unit along with syngas to olefins conversion section.
摘要:
A device and process for the conversion of aromatic compounds, includes/uses: a unit for the separation of the xylenes suitable for treating a cut comprising xylenes and ethylbenzene and producing an extract comprising para-xylene and a raffinate; an isomerization unit suitable for treating the raffinate and producing an isomerate enriched in para-xylene which is sent to a fractionation train; a pyrolysis unit suitable for treating biomass, producing a pyrolysis effluent feeding, at least partially, the feedstock, and producing a pyrolysis gas comprising CO and H2; a Fischer-Tropsch synthesis reaction section suitable for treating, at least in part, the pyrolysis gas, producing a synthesis effluent sent, at least in part, to the pyrolysis unit.
摘要:
Disclosed is a method for reducing the tar content in pyrolysis gas generated in a pyrolysis reactor (1). The method comprises the steps of: guiding the pyrolysis gas through a filter (2) to remove at least 90% of all the particles in the pyrolysis gas having a particle size down to 7 μ and preferably down to 4 μ from the pyrolysis gas, partially oxidizing the pyrolysis gas in a partial oxidation reactor (3) to remove tar from the pyrolysis gas, and guiding the pyrolysis gas through a coke bed (4) to further remove tar from the pyrolysis gas. Furthermore, a two-stage gasifier (6) is disclosed.
摘要:
A compact biomass gasification-based power generation system that converts carbonaceous material into electrical power, including an enclosure that encases: a gasifier including a pyrolysis module coaxially arranged above a reactor module, a generator including an engine and an alternator, and a hopper. The generator system additionally includes a first heat exchanger fluidly connected to an outlet of the reactor module and thermally connected to the drying module, a second heat exchanger fluidly connected to an outlet of the engine and thermally connected to the pyrolysis module, and a third heat exchanger fluidly connected between the outlet of the reactor module and the first heat exchanger, the third heat exchanger thermally connected to an air inlet of the reactor module. The system can additionally include a central wiring conduit electrically connected to the pyrolysis module, reactor module, and engine, and a control panel connected to the conduit that enables single-side operation.
摘要:
A method of gasifying carbonaceous material is described. The method comprises a first step of pyrolyzing and partially gasifying the carbonaceous material to produce volatiles and char. The volatiles and the char are then separated and, subsequently, the char is gasified and the volatiles are reformed. The raw product gas is then finally cleaned with char or char-supported catalysts or other catalysts.
摘要:
The invention provides a system designed for the complete conversion of carbonaceous feedstock into syngas and slag. The system comprises a primary chamber for the volatilization of feedstock generating a primary chamber gas (an offgas); a secondary chamber for the further conversion of processed feedstock to a secondary chamber gas (a syngas) and a residue; a gas-reformulating zone for processing gas generated within one or more of the chambers; and a melting chamber for vitrifying residue. The primary chamber comprises direct or indirect feedstock additive capabilities in order to adjust the carbon content of the feedstock.The system also comprises a control system for use with the gasification system to monitor and regulate the different stages of the process to ensure the efficient and complete conversion of the carbonaceous feedstock into a syngas product.
摘要:
A device for converting a fuel including solid components, known as a solid fuel, into a gaseous fuel, includes a pyrolysis zone (2) for pyrolyzing solid fuel, having pyrolysis elements that are capable of decomposing the solid fuel into a pyrolysis gas and into a solid pyrolysis residue, known as coke, and a combustion zone (3), which is distinct from the pyrolysis zone (2), for burning the pyrolysis gas and having combustion elements (31, 32, 33). The device also includes elements for circulating pyrolysis gas from the pyrolysis zone (2) to the combustion zone (3), which is surrounded by the pyrolysis zone (2).
摘要:
Apparatus and method for gasification of waste are disclosed. Waste material is fed to the top of a first combustion chamber, and a burning, rotating annular column of waste is supported in the combustion chamber. Combustion air is introduced to the first combustion chamber at or below the support for the burning annular column of waste so that the combustion air moves upwardly through the burning column. Combustion gases are withdrawn from the top portion of the first combustion chamber. Particulates are removed and recirculated to the first combustion chamber. The combustion gases are then fed to the top portion of a second combustion chamber. Secondary combustion air and optional fuel are fed to the second combustion chamber to complete the gasification process. A relatively clean producer gas is withdrawn from the bottom portion of the secondary combustion chamber.
摘要:
Apparatus and method for gasification of waste are disclosed. Waste material is fed to the top of a first combustion chamber, and a burning, rotating annular column of waste is supported in the combustion chamber. Combustion air is introduced to the first combustion chamber at or below the support for the burning annular column of waste so that the combustion air moves upwardly through the burning column. Combustion gases are withdrawn from the top portion of the first combustion chamber. Particulates are removed and recirculated to the first combustion chamber. The combustion gases are then fed to the top portion of a second combustion chamber. Secondary combustion air and optional fuel are fed to the second combustion chamber to complete the gasification process. A relatively clean producer gas is withdrawn from the bottom portion of the secondary combustion chamber.