Abstract:
A router includes a plurality of virtual networks, a plurality of output links, at least one decoder and arbitration circuitry. Each virtual network has a plurality of virtual network inputs and a plurality of virtual network outputs. Each virtual network output is associated with an output link. The decoder decodes a header of a data unit received on a virtual network of one of the virtual network inputs. The decoder generates a first request and a second request. The first request is for the allocation of a virtual network output of the virtual network to the virtual network input. The second request is for the allocation of an output link associated with the virtual network output to the virtual network output. The arbitration circuitry performs arbitration of the first request and arbitration of the second request in parallel.
Abstract:
An image sensor is formed by a pixel array including a plurality of pixels. Certain ones of the pixels include, above their active areas, a first optical grating formed of periodically spaced apart parallel strips separated from the active area by a first insulator. Those pixels further include, in another metal level, a second optical grating formed of periodically spaced apart parallel strips separated from the first grating by a second insulator. The second optical grating is laterally shifted with respect to the first grating in a direction orthogonal to a longitudinal direction of the parallel strips.
Abstract:
The present disclosure relates to a method for transmitting two consecutive pairs of images. The method may include decimating each image with a ratio of 2, assembling the two decimated images of each pair in a composite image, transmitting the composite images, and reconstructing complete images from the composite images. In decimation, the information removed from the images of the first pair may be kept in the images of the second pair, from the spatial point of view, and the complete images may be reconstructed by de-interlacing processing from the composite images.
Abstract:
A CMOS image sensor including: an array of M×N pixels, the pixels of a same column being connected to a same output track, each pixel including a photodiode, a sense node, a transfer transistor, a reset transistor, and a read circuit; and a test circuit including an assembly of N elementary reference cells respectively connected to the N output tracks of the sensor, each cell including a resistor, a sense node, a transfer transistor, a reset transistor, and a read circuit, the N resistors being series-connected between first and second nodes of application of a reference voltage.
Abstract:
A semiconductor integrated device is provided with: a die having a body of semiconductor material with a front surface, and an active area arranged at the front surface; and a package having a support element carrying the die at a back surface of the body, and a coating material covering the die. The body includes a mechanical decoupling region, which mechanically decouples the active area from mechanical stresses induced by the package; the mechanical decoupling region is a trench arrangement within the body, which releases the active area from an external frame of the body, designed to absorb the mechanical stresses induced by the package.
Abstract:
A non-volatile digital memory includes: a plurality of thin film resistors; and a control circuit adapted to: program, during a first programming phase, the thin film resistors with a plurality of bits of data by passing a current through at least one of the thin film resistors to reduce its resistance; and read, during a restoration phase, the plurality of bits of data stored by the thin film resistors by generating an electrical signal associated with each thin film resistor and comparing each electrical signal with a reference signal.
Abstract:
An optical electronic package includes transmitting chip and a receiving chip fixed to a wafer. A transparent encapsulation structure is formed by a transparent plate and a transparent encapsulation block that are formed over the transmitter chip and at least a portion of the receiver chip, with the transparent encapsulation block embedding the transmitter chip. An opaque encapsulation block extends over the transparent plate and includes an opening that reveals a front area of the transparent plate. The front area is situated above an optical transmitter of the transmitting chip and is offset laterally relative to an optical sensor of the receiving chip.
Abstract:
A source image is transformed into a destination image having a target aspect ratio. A reference region in the source image is defined. An extended region of interest of the source image having the target aspect ratio and containing the reference region is defined. A set of candidate image regions of increasing resolutions from the extended region of interest is determined, each having the target aspect ratio and containing the reference region. Candidate image regions are scaled to form a candidate target images. A quality metric is used to select a target image providing the best quality metric value.
Abstract:
An electronic system includes a first electronic device (with a first integrated-circuit chip) and a second electronic device (with a second integrated-circuit chip). The second electronic device is stacked above the first electronic device on a same side as the first integrated-circuit chip. Electrical connection elements located around the first integrated-circuit chip electrically connected to the second electronic device to the first electronic device. A metal plate configured for heat capture and transfer extends between the first and second electronic devices. The metal plate includes through-passages aligned to permit the electrical connection elements to pass at a distance.
Abstract:
An electronic system includes a first integrated-circuit chip and a second integrated-circuit chip. A first substrate wafer is positioned between the first and second integrated-circuit chips and configured with a first connection network to make electrical connection to the first integrated-circuit chip. A second substrate wafer, configured with a second connection network to make electrical connection to the second integrated-circuit chip, is positioned facing the first substrate wafer. The connection networks of the first and second substrate wafers are electrically connected through connection structures. A third substrate wafer, including a third connection network, is thermally in contact with the first integrated-circuit chip and electrically connected to the first connection network of the first substrate wafer through further connection structures. The further connection structure may be formed using another substrate wafer.